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1 Summary

• RESET: A general test for functional form in a multiple regression model; it is an F test of joint
significance of the estimated coefficients at the squares, cubes, and perhaps higher powers of the fitted
values from the initial OLS estimation.

• Chow Statistic: An F statistic for testing the equality of regression parameters across different groups
(say, men and women) or time periods (say, before and after a policy change).

• Difference in Slopes: A description of a model where some slope parameters may differ by group or
time period.

• Dummy Variable: A variable that takes on the value zero or one.

• Dummy Variable Trap: The mistake of including too many dummy variables among the independent
variables; it occurs when an overall intercept is in the model and a dummy variable is included for each
group.

• Interaction Term: An independent variable in a regression model that is the product of two explanatory
variables.

• Intercept Shift: The intercept in a regression model differs by group or time period.

2 Extra topic: Piecewise linear regression12

Consider modelling income data for individuals of varying ages in a population. Certain patterns with regard
to some age thresholds will be clearly evident. In general, income will be rising with age, but the slope (i.e.
marginal increase) might change at some distinct milestones. For example, the typical individual

1. at age 18 graduates from high school;

2. at age 22 graduates from college/university.

Then, the time profile of income for the typical individual in this population might appear as in the figure
below.

1Based on: Greene, W. H. (2003), “Econometric Analysis”, 5th edition, Chapter 6.
2Cf. also lecture slides for lecture 4, part 2, slide 10.
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How to model such a phenomenon?

1. We could fit a linear regression model to each of three subsamples separately.
This, however, would most likely lead to a discontinuous function (the dashed line in the figure), which is
not in line with our assumed pattern of the time profile of income.

2. We could use dummy variables, as they can also be used to model varying slope parameters.
Notice that we want to estimate

E(income|age) =


a0 + b0 age if age < 18,

a1 + b1 age if age ∈ [18, 22),

a2 + b2 age if age ≥ 22.

(1)

The threshold values (here 18 and 22) are often referred to as knots in this context. Define two dummies:

D1 = I{age≥18} =

{
0 if age < 18,

1 if age ≥ 18,

D2 = I{age≥22} =

{
0 if age < 22,

1 if age ≥ 22.

Now, we can combine three parts in (1) as follows:

income = β0 + β1 age+ δ1D1 + γ1D1 · age+ δ2D2 + γ2D2 · age+ ε. (2)

where we can see the underlined part as the “baseline” case. Explicitly rewritten, it becomes:

income =


β0 + β1 age+ ε if age < 18,

β0 + β1 age+ δ1 + γ1 age+ ε if age ∈ [18, 22),

β0 + β1 age+ δ1 + γ1 age+ δ2 + γ2 age+ ε if age ≥ 22,

=


β0 + β1 age+ ε if age < 18,

β0 + δ1 +
(
β1 + γ1

)
age+ ε if age ∈ [18, 22),

β0 + δ1 + δ2 +
(
β1 + γ1 + γ2

)
age+ ε if age ≥ 22,

The intercepts in the three segments are: β0, β0 + δ1 and β0 + δ1 + δ2, while the slopes are β1, β1 + γ1
and β1 + γ1 + γ2. So most likely we will still end up with the dashed line! Hence, simply employing the
dummies would not help in solving the problem of discontinuity from the previous point!

3. To make the function continuous we need to impose that that its value in two adjacent segment is equal
in the separating knot (so, simply speaking, that “segments join at the knots”). Hence:{

[β0 + β1 age]|age=18 = [β0 + δ1 +
(
β1 + γ1

)
age]

∣∣
age=18

,

[β0 + δ1 +
(
β1 + γ1

)
age]

∣∣
age=22

= [β0 + δ1 + δ2 +
(
β1 + γ1 + γ2

)
age]

∣∣
age=22

,

=

{
β0 + β1 · 18 = β0 + δ1 +

(
β1 + γ1

)
· 18,

β0 + δ1 +
(
β1 + γ1

)
· 22 = β0 + δ1 + δ2 +

(
β1 + γ1 + γ2

)
· 22,

=

{
0 = δ1 + γ1 · 18,

0 = δ2 + γ2 · 22,
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which means that we need for the dummy coefficients

δ1 = −γ1 · 18,

δ2 = −γ2 · 22.

When we plug this in the original regression (2), we obtain:

income = β0 + β1 age+ (−γ1 · 18)D1 + γ1D1 · age+ (−γ2 · 22)D2 + γ2D2 · age+ ε

= β0 + β1 age︸︷︷︸
=:x1

+γ1D1 · (age− 18)︸ ︷︷ ︸
=:x2

+γ2D2 · (age− 22)︸ ︷︷ ︸
=:x3

+ε.

Constrained least squares estimates are obtained by multiple regression, using a constant and the
variables x1, x2 and x3. Notice that the latter two need to be obviously multiplied by the corresponding
dummies, so that they only affect the relevant segments.
We can test the hypothesis that the slope of the function is constant with the joint test of the two
restrictions γ1 = 0 and γ2 = 0.

3 Warm-up Exercises

3.1 RESET

1. Can you include ŷi as an explanatory variable in the test regression of the RESET? What would happen
then?

That would not make sense! Recall that

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxik,

and for the RESET we consider

yi = β0 + β1xi1 + · · ·+ βkxik + δ1ŷ
2
i + δ2ŷ

3
i + ui,

where we test the null H0 : δ1 = δ2 = 0. Then if we additionally include ŷi as an explanatory variable in
the test regression we obtain

yi = β0 + β1xi1 + · · ·+ βkxik + δ0ŷi + δ1ŷ
2
i + δ2ŷ

3
i + ui

= β0 + β1xi1 + · · ·+ βkxik + δ0
(
β̂0 + β̂1xi1 + · · ·+ β̂kxik

)
+ δ1ŷ

2
i + δ2ŷ

3
i + ui,

so that testing the insignificance of δ0 is equivalent to testing the insignificance of the original regression
model (all its variables at the same time).

Also, we could not perform OLS in the test regression, because ŷi is a linear combination of the explana-
tory variables, which leads to perfect multicollinearity.

2. Consider a regression with a constant term and a single variable xi. What does the RESET specification
look like in this case?

In this simple case we have
yi = β0 + β1xi1 + ui,

with the fitted values
ŷi = β̂0 + β̂1xi1.

Hence, the RESET becomes

yi = β0 + β1xi1 + δ1ŷ
2
i + δ2ŷ

3
i + ui

= β0 + β1xi1 + δ1
(
β̂0 + β̂1xi1

)2
+ δ2

(
β̂0 + β̂1xi1

)3
+ ui

= β0 + β1xi1 + δ1
(
β̂0 + β̂1xi1

)2
+ δ2

(
β̂0 + β̂1xi1

)3
+ ui

= β̃0 + β̃1xi1 + β̃2x
2
i1 + β̃3x

3
i1 + ui

(where β̃0 = β0 + δ1β̂
2
0 + δ2β̂

3
0 , β̃1 = β1 + 2δ1β̂0β̂1 + 3δ2β̂

2
0 β̂1, β̃2 = δ1β̂

2
1 + 3δ2β̂0β̂

2
1 , β̃3 = δ2β̂

3
1).

Hence, this is simply a test on whether or not include x2 or x3 in the original regression.
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3. How to check for both non-linearity and heteroskedasticity?

In case of heteroskedasticity the tests for other features (like RESET and Chow test) need to take this
into account, so that White standard errors need to be used in the test regression then.

So, the ordering to test for both non-linearity and heteroskedasticity would then:

(1) run the RESET with White standard errors (and correct a potential functional misspecification);

(2) run e.g. the Breusch-Pagan test for heteroskedasticity (for the model that has the correct specification
for the conditional mean of y given x).

3.2 Dummy variables

1. Explain the dummy variable trap.

Including in the regression model a constant term and dummy variables for all categories. This introduces
perfect collinearity because one of the categories can be expressed as a perfect linear function of the
remaining categories and the constant term. Or in other words: the sum of the dummy variables for all
categories is equal to the constant term 1, because every observation belongs to exactly 1 group.

2. Let d be a dummy variable and let z be a quantitative variable. Consider the model

y = β0 + δ0d+ β1z + δ1d · z + u,

which is a general version of a model with an interaction between a dummy variable and a quantitative
variable.

(a) Give the relationship between y and z as a function of d.

When d = 0 we have

y = β0 + δ0 · 0 + β1z + δ1 · 0 · z + u

= β0 + β1z + u,

while when d = 1 we have

y = β0 + δ0 · 1 + β1z + δ1 · 1 · z + u

=
(
β0 + δ0

)
+
(
β1 + δ1

)
z + u.

(b) Give the relationship between the expected value of y and z as a function of d. Give a geometric
interpretation of the results.

We simply set the error term to zero as E(u|d, x) = 0. Then using the results from the previous point
we obtain for d = 0

E(y|d, x) = β0 + β1z,

while for d = 1

E(y|d, x) =
(
β0 + δ0

)
+
(
β1 + δ1

)
z.

We can see that these are simply two linear functions in z.

(c) Assume that δ1 6= 0. What does this assumption mean? Find z∗, a value of z such that the conditional
expectation of y given z and given d = 0 is equal to the conditional expectation of y given z and given
d = 1. When is z∗ positive?

When δ1 6= 0 then two lines from the previous point are not parallel. Then, at z∗ they intersect:

E(y|d = 0, x) = E(y|d = 1, x),

β0 + β1z =
(
β0 + δ0

)
+
(
β1 + δ1

)
z,(

β1 − β1 − δ1
)
z = −β0 + β0 + δ0,

δ1z = −δ0,

z = −δ0
δ1
.

Obviously, z∗ is positive if and only if δ0 and δ1 have opposite signs.
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(d) Suppose that we have estimated the following model

ŷ = 2.289− 0.357female+ 0.50educ+ 0.030female · educ

where y is the log wage using, female is a gender dummy and educ is the number of total years of
education. Use the above equation to find the value of educ such that the predicted values of log wage
are the same for men and women.

Using the result from the previous point we obtain:

educ∗ = −−0.357

0.030
= 11.9.

(e) Based on the equation in part (d), can women realistically get enough years of college so that their
earnings catch up to those of men? Explain.

The estimated years of college where women catch up to men of almost 12 years is much too high
to be practically relevant. While the estimated coefficient on female · educ shows that the gap is
reduced at higher levels of eduction, it is never closed – not even close. In fact, at four years of
college, the difference in predicted log wage is still

−0.357 + 0.030 · 4 = −0.237

less for women.

3.3 Small Computer Exercise

Generate a sample of size 100 from the model yi = 2 +
√
xi + εi, where xi are independent and uniformly

distributed on the interval [0, 20] and the εi are independent and distributed as N (0, 0.01). Regress y on a
constant and x. Perform a RESET.
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Recall that the null for the RESET is that the functional specification is correct. The obtained value of the F
test statistic is 178.62 and under the null it follows the F (2, n− k− 3) distribution. The corresponding p-value
is 0, so at any significance level we can reject the null. This shows that the RESET is flexible enough to detect
various forms of non-linearity, including roots of variables (and not only their powers). Note that this is the
built-in version of the RESET in EViews, which assumes homoskedasticity.

4 Computer Exercises

Exercise 1

For the data bankwages.wf1 consider the model

yi = α+ γDgi + µDmi + βxi + εi, (3)

where yi is the logarithm of yearly wage, Dg is a gender dummy (1 for males, 0 for females), Dm is a minority
dummy (1 for minorities, 0 otherwise) and xi is the number of completed years of education. The education
ranges from 8 to 21 years. The n = 474 employees in the sample are ordered according to the values of x,
starting with the lowest education:

• those with ranking number 365 or lower have at most 15 years of education (x ≤ 15);

• those with ranking number 366–424 have exactly 16 years of education (x = 16);

• those with ranking number 425 or higher have over 16 years of education (x ≥ 17).

(i) Test whether an additional year of education gives the same relative increase in wages for lower and higher
levels of education (i.e. investigate the marginal effect of β of education on salary). To this end, perform
the Chow tests on parameter variations in (3), where the break point is at observation 425 (with education
at least 17 years). Check the outcomes on a break.

We run the OLS on the full sample of n = 474 employees and on two subsamples, of n1 = 424 employees
with x ≤ 16 and of n2 = 50 employees with x > 16.
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The Chow F -test statistic3 is given by

F =
SSR0−SSR1−SSR2

k
SSR1+SSR2

n1+n2−2k

H0∼ F (k, n1 + n2 − 2k),

where the null is no break at the chosen point. Plugging in the regression results we obtain

F =
30.852−23.403−2.941

4
23.403+2.941
424+50−8

= 19.932
H0∼ F (4, 466),

with the corresponding p-value of 0. At any significance level the null hypothesis (that all four coefficients
are equal among the two groups) is clearly rejected. Hence, the Chow test confirms that there is a break
at observation 425 in the marginal effect β of education (and the constant term, gender and minority) on
salaries.

Alternatively, we can use the EViews built-in test chow 425, which obviously gives the same result.

(ii) Check the effect of changing of the break point: now set it at observation 366 (with education at least
16 years). Perform the Chow tests on parameter variations in (3) and check the outcomes on a break.
Compare the results with these from (i).

The original regression stays at it was, but the two subsample regressions, for the n1 = 365 employees
with x < 16 and of n2 = 109 employees with x ≥ 16, are now given by:

The new value of the Chow statistic is given by

F =
30.852−12.697−7.772

4
12.697+7.772
365+109−8

= 58.524
H0∼ F (4, 466),

with the corresponding p-value of 0. So again, we reject the null that there is no change in the marginal
effect β of education on salaries, but this time at observation 366.

(iii) Formulate a model with two different values of β in (3): one for education levels less than 16 years
(observations i ≤ 365) and another for education levels of 16 years or more (observations i > 366).
Estimate this model, and give an interpretation of the outcomes. [Hint: think how to make the expected
log wage a continuous function of education.]

We know that dummy variables are a helpful tool to remove parameter variation. So we need to work
with dummies. But how? Possibly, we could think of the following three cases.

3Notice that the statistic from the lecture is a special case of this general statistic. The Chow test presented in the lecture
was an F -test with the null that the coefficients at the dummy and its product with x are 0. Under homoskedasticity it can be
shown that that F statistic is equal to the one here. The one here makes sense, because it is large if SSR0 is much larger than
SSR1 + SSR2, which happens if the quality of the model becomes much worse if we force the coefficients to be the same among
the two groups.
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(a) Including dummies for low and high levels of education:

yi = α+ γDgi + µDmi + β∗xi + β∗lowI{xi<16} + β∗highI{xi≥16} + εi.

Obviously, this is a dummy variable trap!

(b) Considering the low and high levels of education separately:

yi = α+ γDgi + µDmi + βlowI{xi<16} · xi + βhighI{xi≥16} · xi + εi.

This has a disadvantage that the expected log wage is not a continuous function of education.

(c) Considering the additional effect of the high level of education:

yi = α+ γDgi + µDmi + βxi + βhighI{xi≥16} · (xi − 16) + εi.

Here we make the log wage a continuous, piecewise-linear, function of education.

We can see that, as expected, there is a “bonus” from having a high level of education, here defined
as at least 16 years of education. The increase in the slope in the hight education segment is 0.126
and it is statistically significant.

(iv) Perform a sequence of Chow break tests for all segments where the variable ‘education’ changes. Notice
that this variable takes on ten different values, so that there are nine possible break points. Comment on
the outcomes.

We have ten segments split by the level of education:

xi =



8 i = 1, . . . , 53,

12 i = 54, . . . , 243,

14 i = 244, . . . , 249,

15 i = 250, . . . , 365,

16 i = 366, . . . , 424,

17 i = 425, . . . , 435,

18 i = 436, . . . , 444,

19 i = 445, . . . , 471,

20 i = 472, 473,

21 i = 474,
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which indeed indicates 9 possible break points. Notice, however, that if we cannot to perform the Chow
test for any observation with i ≤ 53 as then the education variable for one subsample is constant xi = 8
– which obviously results in the following error:

We also cannot perform the Chow test for observations with i ≥ 427, as then the gender variable is
constant, which leads to the same problem. Hence, we can only effectively consider two more break points
(in addition to the two previously analysed): i = 244 (with xi ≥ 14 for i ≥ 244) and i = 250 (with xi ≥ 15
for i ≥ 250), which give us the following results:

In both case the p-value for the test F statistic is zero, so we have at any significance level we can reject
the null about no break at the given point.

Interestingly, it turns that for any “admissible” point (i.e. i = 55, . . . , 426) the conclusion from the test is
the same! This shows that the Chow test is rather robust in this case, in the sense that its rejection does
not depend much on where to put the “border” between the groups. This finding points at particular
features of the current dataset, because:

(a) the null hypothesis is so “heavily” violated;

[If the null was only be “slightly” violated, then it might matter where the “border” is chosen. Then
it may be important to choose the “border” somewhere close to the median, to have two groups of
a reasonable (similar) size.]

(b) because the number of observations is not small.

[The test results also depend on the total number of observations. If the number of observations is
small, then it may be more important to choose the “border” somewhere close to the median, to
have two groups of a reasonable (approximately equal) size. ]

Exercise 2

Consider data in coffee.wf1 on weekly coffee sales for one brand. There are n = 12 weekly observations for
the weeks when marketing actions were taken. In particular, there were six weeks with price reductions without
advertisement, and six weeks with joint price reductions and advertisement. As there are no advertisements
without simultaneous price reductions, we formulate the model

y = β1 + β2Dp + β3Da + β4DpDa + ε,

where y denotes the logarithm of weekly sales, Dp is a dummy variable with the value 0 if the price reduction is
5% and the value 1 if this reduction is 15%, and Da is a dummy variable that is 0 if there is no advertisement
and 1 if there is advertisement.

(i) Give an economic motivation for the above model. Estimate this model and test the null hypothesis that
β2 = 0. What is the p-value of this test?

The figure below presents how both dummies, Dp and Da, as well as their product, DpDa, evolve over
time.
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We know that a price reduction of some type (low or high) was always on, so we only consider the
additional effect of a big price cut (i.e. by 15%). Furthermore, we know that there are no advertisements
without simultaneous price reductions (of any type).

The sales are expected to increase when there is a big price reduction or when there is advertisement.
Moreover, when there are both, a big price reduction and advertisement, the sales are likely to increase
even more, as more people will consider to buy the product due to the advertisement, and the more will
be likely to actually purchase it due to the lower price.

Then, the dummy Dp measures an additional effect of the big price cut when there is no advertisement;
the dummy Da captures the effect of advertisement given there is the small price reduction; the product
of dummies DpDa shows the joint effect of advertisement and the big price reduction, so the extra effect
of advertisement when there is the big price cut. Notice that the sum of the coefficients for Dp and DpDa

measures the impact of the big price reduction when advertisement is launched.

The figure below presents the estimation results.

The t-statistic for this test is

β̂2 − 0

se(β̂2)
=

0.2808− 0

0.0596
= 4.7114

H0∼ tn−k = t12−4 = t8,

with the corresponding p-value of 0.0015. So at any conventional significance level we can reject the null
and conclude that β2 is significantly different from zero.

(ii) Estimate the above model, replacing Da by the alternative dummy variable D∗a, which has the value 0 if
there is advertisement and 1 if there is not. The model then becomes

y = β∗1 + β∗2Dp + β∗3D
∗
a + β∗4DpD

∗
a + ε,

Compare the estimated price coefficient and its t-value and p-value with the results obtained in (i).
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The t-statistic for this test is

β̂2 − 0

se(β̂2)
=

0.5811− 0

0.0596
= 9.4171

H0∼ tn−k = t12−4 = t8,

with the corresponding p-value of 0. So again at any conventional significance level we can reject the null
and conclude that β2 is significantly different from zero.

(iii) Explain why the two results for the price dummy differ in (i) and (ii). Discuss the relevance of this fact
for the interpretation of coefficients of dummy variables in regression models.

With dummy variables you always choose one category as the reference category. The estimate for the
constant term refers to the expectation of the dependent variable when the dummy is “switched-off”, so
for the non-reference category. The estimate for the coefficient for the dummy itself shows the average
additional effect from “switching-on” the dummy. So the sum of the estimate for the constant and the
estimate for the coefficient for the dummy describe the expected effect for the reference category.

Hence, if you change the reference category as above:

• the estimates for the constant term and for the remaining variables (which do not include the dummy)
will change accordingly (here, for Dp);

• the signs the variables ‘related’ to the dummy will change (here, for Da and DpDa);

• however, the measures for the whole model (like e.g. R2 and the fitted values ŷi for all observa-
tions) will not be affected: this is still “the same model”, only with a different interpretation of the
coefficients.
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