Econometrics 11
Tutorial Problems No. 1

Lennart Hoogerheide & Agnieszka Borowska

15.02.2017

1 Summary

e Binary Response Model: A model for a binary (or dummy, i.e. with two possible outcomes 0 and 1)
dependent variable.

e Response Probability: In a binary response model, the probability that the dependent variable takes
on the value one, conditional on explanatory variables.

e Linear Probability Model: The multiple linear regression model with a binary dependent variable,
where the response probability is linear in the parameters.
[bad idea! the probability can be estimated outside the [0, 1] interval]

e Logit Model: A model for binary response where the response probability is the logit function evaluated
at a linear function of the explanatory variables.

1 _exp(2)

G(z) = 1—exp(—z) 1+4+exp(z)

e Probit Model: A model for binary responses where the response probability is the standard normal
cumulative distribution function (CDF) evaluated at a linear function of the explanatory variables.

Glz) = B(2) = /_ ; B(v)dv = /_ oo 1% exp (-”j) dv.

e Latent Variable Model: A model where the observed dependent variable is assumed to be a function
of an underlying latent, or unobserved, variable.

[interpretation of binary logit/probit model]

e Partial Effect at the Average (PEA): In models with nonconstant partial effects, the partial effect
evaluated at the average values of the explanatory variables.

[Substitute averages Z1,...,Z, where k is the number of regressors.]

e Average Partial Effect (APE): For nonconstant partial effects, the partial effect averaged across the
specified population.

[(Eyr, %ﬁj‘m =iy, 9(Bo + Prwir + - + Brxir) - Bj]

e Akaike Information Criterion (AIC): A general measure for relative quality of models estimated with

maximum likelihood, computed as
InL k

AIC = —2—— +2—,
n n
where In L is the maximum value of likelihood, n is the number of observations and k is the number of
parameters.

e Schwarz Criterion (SC): A general measure for relative quality of models estimated with maximum

likelihood, computed as

SC = f2g Jrln(n)ﬁ7
n n

where In L is the maximum value of likelihood, n is the number of observations and k is the number of
parameters.



e Pseudo R-Squared (McFadden R-Squared): A goodness-of-fit measure that is particularly used for
logit /probit models.

InL

In L() ’

where In L is the maximum value of loglikelihood and In Ly is the maximum value of likelihood in model

with only a constant term.

McFadden R-Squared =1 —

[not only a relative quality measure, unlike AIC or SC]

e Percent Correctly Predicted (Hit Rate): In a binary response model, the percentage of times the
prediction of zero or one coincides with the actual outcome. Percentage of observations with y; = v;,
where

_ 1, if P(y; = 1|z;) = G(z}5) > ¢,
0 By = 1e) = GlB) <o,

where c is typically chosen as 0.5.

2 Extra Topics

2.1 The Perfect Classifier Problem
Recall: the loglikelihood

InL(B) =Inp(y1, ..., ynlz1,. .., 7n)

=Y {umlGEB) + (1 -yl - G@B) }. (1)
=t ) ()

We have
0<G(ziB) <1,

hence

Notice that

Perfect fit:
yi=1 = G(8) =1,
Y =0 < G(z8) =0.
This could happen only when
yi=1 < 2.8 =00, (2)
Yyi =0 < zif = —o0. (3)
We say that the loglikelihood (1) is bounded above by 0, and it achieves this bound if (2) and (3) hold.
Now, suppose that there is some linear combination of the independent variables, say x}3°, such that
yi=1 < z/5* >0, (4)
Yy =0 < z;8° <0. (5)

In other words, there is some range of the regressor(s) for which y; is always 1 or 0. Then, we say that z/5°
describes a separating hyperplane (see Figure 1) and there is complete separation of the data. z;3° is
said to be a perfect classifier, since it allows us to predict y; with perfect accuracy for every observation.

Problem? Yes, for ML estimation! Then, it is possible to make the value of In L arbitrarily close to 0 (the
upper bound) by choosing 3 arbitrarily large (in an absolute sense)!. Hence, no finite ML estimator exists.

1Formally: by setting 8 = v3°® and letting v — oco.
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Figure 1: Figure 11.2 from Davidson and MacKinnon (1999), “Econometric Theory and Methods”: A perfect
classifier yields a separating hyperplane.

This is exactly what any nonlinear maximization algorithm will attempt to do if there exists a vector 3°® for
which conditions (4) and (5) are satisfied. Because of the numerical limitations, the algorithm will eventually
terminate (with some numerical error) at a value of In L slightly less than 0.

This is likely to occur in practice when the sample is very small, when almost all of the y; are equal to 0 or
almost all of them are equal to 1, or when the model fits extremely well.

The next topic is designed to give you a feel for the circumstances in which ML estimation is likely to fail
because there is a perfect classifier.

2.2 Simulation from the latent variable model?®

Consider the latent variable model

yi = Bo + Pz + e,
eiNN(051)7

)L ifyp >0,
"0, iy <o

Suppose that x; ~ N(0,1). We will generate 5,000 samples of 20 observations on (x;,y;) pairs in the following
way:

1,000 assuming that By =0 and B, = 1;

1,000 assuming that By =1 and B, = 1;

1,000 assuming that Bg = —1 and p; = 1;

1,000 assuming that By = 0 and B = 2;

1,000 assuming that By = 0 and p1 = 3.

For each of the 5,000 samples, we will attempt to estimate a probit model. We are interested in the following
question: In each of the five cases, what proportion of the time does the estimation fail because of perfect
classifiers? We also want to explain why there will be more failures in some cases than in others. Next, we will
repeat this exercise for five sets of 1,000 samples of size 40, with the same parameter values. This will allow us
to draw a conclusion about the effect of sample size on the perfect classifier problem.

Figure 2 presents an EViews code for the first case (N = 20 with 8y and 51).

2Based on Exercise 11.5 from Davidson and MacKinnon (1999), “Econometric Theory and Methods”.



] Program: LATENTVARIABLE_DM17_5 - (h:\desktop\econometric2\latentvariable_dml... | = || = |5

PrintlSaveISaveAsICutlCopylPasteIInsertT)rtIFindIRepIaceIWrapH-ILineNum+)‘-IEncrypt-
wfcreate(wf=latentvariable_dm17_5_0_1) u 20

Control Variables

IN =20

M =1000

setmaxerrs 6*IM '6 because if the estimation fails no coefs, stderrs and loglik are created, and
assigning of these creates next errors

Parameters
Ibetal = 0
lbetal =1

IN,IM
INIM
IN I
IN,IM

matrix
matrix
matrix
matrix

XS
us
ys
Y.

stars

matrix(2,IM) eq_coeff
matrix(2,IM) eq_stderrs
matrix(1.!M) eq_loglik

for li=1 to IM
series u = nrnd
matplace(us,u,1.1i)
series x = nrnd
matplace(xs,x,1.1i)
series y_star = Ibetal + lbetal™ + u
matplace(y_stars,y_star,1.li)
series y = @recode(y_star=0, 1, 0)
matplace(ys.y,1.l)

equation eq.binary(d="n") y ¢ x
eq_coeff(1.li) = eq. @coefs(1)
eq_coeffi2 i) = eq @coefs(2)
eq_stderrs(1.li) = eq.@stderrs(1)
eq_stderrs(2.li) = eq @stderrs(2)

eq_loglik = eq.@logl
next

scalar err_no1 = @errorcount/6

wfsave "H:\Desktop\Econometric2\DM17_5_N20_betas_0_1"

Figure 2: EViews code for simulation of M = 1,000 scenarios of binary response model with N = 20 independent
variables, with Sy = 0 and 8; = 1, and for probit estimation. But don’t worry, you will not be asked for EViews
commands at the exam!



f # ' Run Program | l @1

Program name or path

H:\DESKTOP\ECONOMETRIC2
\LATENTVARIABLE_DM17_5.PRG =)

Program arguments ( %&0 %:1...)

Runtime errors

(@) Verbose (slow) update screen/status line

() Quiet (fast) no screen/status line updates

[ version 4 compatible variable substitution and
program boolean comparisons

Maximum errors before halting: | 6000]

[[] save options as default =

L = = = ]

Figure 3: Manually changing of maximum errors before halting (EViews Run Program tab).

& Complete separation: X>-0.0250162894921 perfectly predicts
binary response success in "EQUATION EQ{!T}BINARY(D="N")
Y CX"

Figure 4: EViews Error Message about complete separation problem in the probit estimation.

If you are interested, you can check the results of each probit estimation: the coefficients estimates, their standard
errors and the loglikelihood values are stored in matrices eq_coeff, eq_stderrs and eq_logl, respectively. But
what we are truly after, is the error count variable, err_nol, which reports how many times an estimation error
occurred. Notice, that we used the command setmaxerr to set the maximum number of error that the program
may encounter before execution is halted. Alternatively, you can specify it in the box showing up after clicking
on the run button, as in Figure 3. Without changing the value of maximum error allowed, the program would
shortly break with the error message reporting the perfect separation problem, similar to the one from Figure
4.

The table below shows the proportion of the time that perfect classifiers were encountered for each of the five
cases and each of the two sample sizes.

Parameters n=20 n=40
Bo=0,p=1 0.012 0.000
Go=1 p1=1 0.074 0.001

Bo=—1,6,=11] 0.056 0.002
Bo=0, 8 =2 0.143 0.008
Bo=0,0=3 0.286 0.052

The proportion of samples with perfect classifiers increases as both 8y and 3 increase in absolute value. When
Bo = 0, the unconditional expectation of y; is 0.5.

As [y increases in absolute value, this expectation becomes larger, and the proportion of 1s in the sample
increases.

As [ becomes larger in absolute value, the model fits better on average, which obviously increases the chance
that it fits perfectly.

The results for parameters (1,1) are almost identical to those for parameters (—1,1) because, with z; having
mean 0, the fraction of 1s in the samples with parameters (1,1) is the same, on average, as the fraction of 0s in
the samples with parameters (—1,1).

Comparing the results for n = 20 and n = 40, it is clear that the probability of encountering a perfect classifier
falls very rapidly as the sample size increases.



3 Lecture Problems

Exercise 1.

This exercise is about the reason why we can use the standard normal (or standard logistic) distribution. Con-
sider the binary probit model

P(y; = 1]z;) = ®(Bo + P12:),
P(y; = 0lx;) = 1 — ®(Bo + Br2i),

where ®(-) is the cumulative distribution function (CDF) of the standard normal distribution. This stems from
the assumption that

yi = Bo + Brzi + e,

where e; is an error term with standard normal distribution (independent of x;), where

1 ify; >0,

=y >0} =
Yi {yL } {0 ny;kgo

Suppose that we would assume that e; ~ N (u,0?), where u and o are parameters to be estimated (instead of
setting p =10 and o0 =1).

(1) Show that

P(yi = Ofr;) =1 — @ (W) .

Hint: use the ‘standard’ trick that “=£ ~ N(0,1) if e; ~ N (u, 0?).
We have
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where we used that the standard normal distribution of “—# is: ) symmetric around 0, **) continuous
and (***) independent of ;.

Here: 8 = By + B12i, so that

B(y: = o) = ® (Mﬂt) |

o
Further, we have either y; = 0 or y; = 1, so that
P(yi = Olz;) + P(y; = 1]a) = 1,

so that

P = o) = 1- By = 1) = 1— ¢ (ALY,

g



(2) What happens to P(y; = 1|x;) if we change By and u into Bo+ 1 and p— 17
We have

P(y; = 1]z;) = ® ((50—!—1)-&-5;%—&-@—1)) _ (W),

so nothing happens to P(y; = 1|x;) in this case.

Therefore By and p are not identified: the model with parameters Sy + a and p —a (—00 < a < o0)
is the same Data Generating Process (DGP) as the model with parameters 8y and p: it yields the same
probabilities P(y; = 0|z;) and P(y; = 1|z;) for each observation, and therefore exactly the same Bernoulli
distributions and the same properties of the y; (conditionally upon z;). Even if we would have infinitely
many observations, we could not distinguish between the model with parameters 3y and p and the model
with parameters 8y + a and p — a. Therefore we can set u = 0 without loss of generality.

(8) What happens to P(y; = 1|x;) if we change By, B1, p and o into 20y, 251, 21 and 207
We have

P(y; = 1]z:) = B (250 + 261 +2ﬂ> g <5+/3+u> |

20 o

so nothing happens to P(y; = 1|x;) in this case.

Therefore By, 81, 4 and o are not identified: the model with parameters b- 8y, b- 31 , b-pand b- o is
(b > 0) is the same Data Generating Process (DGP) as the model with parameters Sy, 81, p and o: it
yields the same probabilities P(y; = 0|z;) and P(y; = 1|z;) for each observation, and therefore exactly the
same Bernoulli distributions and the same properties of the y; (conditional upon z;). Even if we would
have infinitely many observations, we could not distinguish between the model with parameters gy, 81, u
and ¢ and the model with parameters b- 3y, b- 51 , b- u and b- 0. Therefore we can set o = 1 without loss
of generality.

(4) What is the difference in P(y; = 1|z;) between the model with parameters By, 1, p and o and the model
with parameters b- (B +a), b- 1, b-(u—a) and b- o (with —co < a < oo and b >10)?

We have

P(yi:1|mi):(b(b-(50+a)+b-51zi+b~(u—a)> :(I)<50+613i+ﬂ)7

b-o o

So there is no difference in P(y; = 1]z;) between the model with parameters By, 81, 1 and o and the model
with parameters b- (8 +a), b- 81, b- (u—a) and b- o (with —o0o < a < oo and b > 0).

Therefore 5y, 51, 4 and o are not identified. We we can set u = 0 and o = 1 without loss of generality.
Only after imposing these restrictions 4 = 0 and o = 1, the parameters 3y and ; are identified: a different
value of (Bp, f1) implies a different distribution of y; (conditional upon z;).

Execise 2.

The data are in the EViews file bank_employees.wf1.

(1) Change the threshold from 0.5 to § = %Z?:l y;. Compare the percentage correctly predicted between the
binary probit and binary logit model.

We have n = 447 observations, where y; = 0 for 363 observations and y; = 1 for 84 observations. So
Y = 84/447 = 0.1879.

Expectation-Prediction Evaluation for Binary Specification Expectation-Prediction Evaluation for Binary Specification
Equation: BINARY_PROBIT Equation: BINARY_LOGIT
Buccess cutoff C=01879 Success cutoff. C=0.1879
Estimated Equation Constant Probability Estimated Equation Constant Probability
Dep=0 Dep=1 Total Dep=0 Dep=1 Total Dep=0  Dep=1 Total Dep=0 Dep=1 Total
P{Dep=1)==C 333 5 338 0 0 a P(Dep=1)==C 333 5 338 0 0 0
P(Dep=1)=C 30 79 109 363 84 447 P(Dep=1}-C 30 79 109 363 84 447
Total 363 84 447 363 84 447 Total 363 84 447 363 84 447
Correct 333 79 412 0 84 84 Correct 333 79 412 0 24 84
% Correct 9174 94.05 92.17 0.00  100.00 18.79 % Correct 9174 94.05 9217 0.00 100.00 1879
% Incorrect 8.28 595 7.83  100.00 0.00 81.21 % Incorrect 8.26 5.95 7.83  100.00 0.00 81.21
Total Gain™ 9174 -5.05 73.38 Total Gain* 9174 -5.95 7338
Percent Gain** 9174 A 90.36 Percent Gain™ 9174 MNA 90.28
*Change in "% Correct” from default (constant probability) specification *Change in "% Correct” from default (constant probability) specification
**Percent of incorrect (default) prediction corrected by equation **Percent of incorrect (default) prediction corrected by equation



Percentage correctly predicted = 92.17% in both models.

Note: this threshold 0.1878 (instead of 0.5) implies that we predict ; = 1 more often (and g; = 0 less
often). Now we have 109 predictions ¢; = 1 instead of 50. In this case this threshold 0.1878 leads to a
better percentage correctly predicted of 92.17% instead of 89.71%; the latter does not need to be the case
in general.

(2) Change the threshold from 0.5 to 0.4. Compare the percentage correctly predicted between the binary probit
and binary logit model.

Expectation-Prediction Evaluation for Binary Specification Expectation-Prediction Evaluation for Binary Specification
Equation: BINARY_PROBIT Equation: BINARY_LOGIT
Success cutoff C=04 Success cutof. C=0.4
Estimated Equation Constant Probability Estimated Equation Constant Probability
Dep=0 Dep=1 Total Dep=0 Dep=1 Total Dep=0 Dep=1 Total Dep=0 Dep=1 Total
P{Dep=1)==C 357 40 397 363 84 447 P(Dep=1)==C 333 5 338 363 84 447
P(Dep=1)=C 6 44 50 0 0 0 P(Dep=1)=C 30 79 108 0 0 0
Total 363 84 47 363 84 447 Total 363 84 447 363 24 447
Correct 357 44 401 363 0 363 Correct 333 79 412 363 0 363
% Correct 98.35 52.38 8971 100.00 0.00 81.21 % Correct 91.74 94.05 9217 100.00 0.00 81.21
% Incorrect 1.65 47.62 10.29 0.00  100.00 18.79 % Incorrect 826 5.95 7.83 0.000 100.00 18.79
Total Gain* -1.65 52.38 8.50 Total Gain® -8.26 94.05 10.96
Percent Gain™ NA 52.38 4524 Percent Gain** NA 9405 58.33
*Change in "% Correct” from default (constant probability) specification *Change in "% Correct” from default (constant probability) specification
=*Percent of incorrect (default) prediction corrected by equation **Percent of incorrect (default) prediction corrected by equation

Percentage correctly predicted = 89.71% in binary probit model.

Percentage correctly predicted = 92.17% in binary logit model.

So, for this value of the threshold 0.4 the binary logit model has a better percentage correctly predicted
than the binary probit model.

(3) Can you find a threshold so that >, §; = Y ., y; ? Motivate your answer.

No. The reason is that the explanatory variable education (which is the only explanatory variable in this
model) takes a finite number of values, so that the estimated probability P(y; = 1|z;) is exactly the same
for groups of individuals that have exactly the same education.

200
Series' EDUCATION
— Sample 1 447
160 - Observations 447
Mean 1369128
Median 15.00000
1207 Maximum 2100000
Minimum 2000000
Std Dev. 2799502
80 Skewness -0.122309
Kurtosis 2 828635
40 Jarque-Bera 1661425
H Probabilty 0435739
0 = O m ﬂ —
M — A==

We have >, y; = 84 observations with y; = 1 in the actual dataset.

084 3

064

044 @

PR{Y =1 | EDUCATION )

0.24

0.0 ¥ T ¥ T T T T

EDUCATION

There are 50 individuals with education > 17; these have I@’(yZ = 1]z;) > 0.5 in the binary logit model.
There are 59 individuals with education = 16; these have P(y; = 1|z;) = 0.4036 in the binary logit model.
So:



e We have 50 predictions with g; = 1, if we take a threshold like 0.5, so that each individual with
education > 17 gets prediction ; = 1 and so that each individual with education < 16 gets prediction
y; = 0.

e We have 50+ 59 = 109 predictions with g; = 1, if we take a threshold like 0.4, so that each individual
with education > 16 gets prediction g; = 1 and so that each individual with education < 15 gets
prediction g; = 0.

e We can not get exactly 84 observations with g; = 1.

(4) Change the value of education of the last observation from 12 to 120 (to create an extreme outlier with

4

enormous education and y; = 0).

Note: first you may need to click the Edit +- button above the spreadsheet with values. Re-estimate the
binary probit and logit models. Compare the percentage correctly predicted between the binary probit and
binary logit model. Can you explain the difference in quality between the probit and logit models?

Note: Here we have a binary logit/probit model, where we have added an outlier by changing the education
of the last observation to 120 (instead of 12), where y; = 0 for this last observation. So, we created an
extreme observation with an extremely high value of education and still y; = 0. The person of the last
observation has an administrative job, not a management job.

Note: if the last observation would have 1y; = 1, then this would not be an outlier! Then the extremely
high value of education would simply ‘match’ with y; = 1, so that changing 12 into 120 would hardly
affect the parameter estimates.

For threshold = 0.5 we obtain:

Expectation-Prediction Evaluation for Binary Specification Expectation-Prediction Evaluation for Binary Specification
Equation: BINARY_PROBIT Equation: BINARY_LOGIT
Success cutoft C=05 Success cutoff C=05
Estimated Equation Constant Probability Estimated Equation Caonstant Probability
Dep=0 Dep=1 Total Dep=0 Dep=1 Total Dep=0 Dep=1 Total Dep=0 Dep=1 Total
P(Dep=1)==C 362 84 446 363 84 447 P{Dep=1)==C 359 48 407 363 84 447
P(Dep=1}=C 1 0 1 0 0 0 PiDep=1)-C 4 36 40 0 o 0
Total 363 84 447 363 84 447 Total 363 84 447 363 84 447
Correct 362 0 362 363 0 363 Correct 359 36 395 363 o 363
% Correct 99.72 0.00 80.98 100.00 0.00 81.21 % Correct 93.90 4286 88.37  100.00 0.00 81.21
% Incorrect 0.28  100.00 19.02 0.00  100.00 18.79 % Incomrect 1.10 57.14 11.63 0.00 100.00 18.79
Total Gain* -0.28 0.00 -0.22 Total Gain* -110 4286 716
Percent Gain** NA 0.00 -119 Percent Gain™ NA 4286 38.10
*Change in "% Correct” from default (constant probability) specification *Change in "% Correct” from default (constant probability) specification
**Percent of incorrect (default) prediction corrected by equation **Percent of incorrect (default) prediction corrected by equation

Now we see a substantial difference in percentage correctly predicted between the binary probit model and
the binary logit model: 80.98% versus 88.37%. (The binary probit model does not even beat the approach
of simply predicting g; = 0 for each observation, which has percentage correctly predicted of 81.21%.)

Explanation: the tails of the logistic distribution are fatter than the tails of the normal distribution:
outliers can occur in the logistic distribution, so that the parameter estimates are relatively less affected
by outliers. In the normal distribution, the presence of one outlier can have a huge effect on the parameter
estimates.

Roughly stated, in the binary probit model the parameter estimates BO and Bl are enormously changed
in order to “keep the last observation with (education = 120,y = 0) out of the extreme tail”.

Exercises®

W17/1

(i) For a binary response y, let § be the proportion of ones in the sample (which is equal to the sample average

of the y; ). Let 4y be the percent correctly predicted for the outcome y = 0 and let §; be the percent correctly
predicted for the outcome y = 1. If p is the overall percent correctly predicted, show that p is a weighted
average of 4o and §i:

p=(1-9)qo + yd-

Let ng denote the number of observations when y; = 0, n; be the number of observations when y; = 1 and
n = ng + ny the sample size. Moreover, let mg denote the number (not the percent) correctly predicted

3In “WX/Y” W refers to the book by Wooldridge (Edition 5, but NOT the international edition, which my have slightly

different numbers/stories in the exercises than the international edition), X to the chapter number there and Y to the exercise
number.



when y; = 0 (so the prediction is also zero) and let m; be the number correctly predicted when y; = 1.
Then, the proportion correctly predicted is w By simple algebra, we can write this as follows:

O L T = (L) g
no n no ny

mo + My - ng Mo ny ma
n n

ny
n

where we have used the fact that § =
proportion of the sample with y; = 0).

(the proportion of the sample with y; = 1) and 1 — g = 22 (the

Next, notice that ¢ is the proportion correctly predicted when y; = 0, and 7= is the proportion correctly
0 ni
predicted when y; = 1. Therefore, we have

Mo + My Mo | My
MET_ (1) g g
n o ni
Multiplying both sides by 100 yields
p=(1-19)qo + yd1, (6)
where we use the fact that, by definition,
p—100.MOEML L 100 ™0 o 10, ™1
n no ni

(i1) In a sample of 300, suppose that § = 0.70, so that there are 210 outcomes with y1 = 1 and 90 with y; = 0.
Suppose that the percent correctly predicted when y = 0 is 80, and the percent correctly predicted when
y =1 1is 40. Find the overall percent correctly predicted.

We just use formula (6) from part (3):
p=0.30-80+0.70 - 40 = 52.

Therefore, overall we correctly predict only 52% of the outcomes. This is because, while 80% of the time
we correctly predict y = 0, the observations where y; = 0 account for only 30 percent of the outcomes.
More weight (i.e. 0.70) is given to the predictions when y; = 1, and we do much less well predicting that
outcome (getting it right only 40% of the time).

W17/2

Let grad be a dummy variable for whether a student-athlete at a large university graduates in five years. Let
hsGPA and SAT be high school grade point average and SAT score, respectively. Let study be the number of
hours spent per week in an organized study hall. Suppose that, using data on 420 student-athletes, the following
logit model is obtained:

P(grad = 1|hsGPA, SAT, study) = A(—1.17 + 0.24 hsGP A + 0.00058 SAT + 0.073 study),

where A(z) = exp(z)/[1 + exp(z)] is the logit function. Holding hsGPA fixed at 3.0 and SAT fized at 1,200,
compute the estimated difference in the graduation probability for someone who spent 10 hours per week in study
hall and someone who spent 5 hours per week.

We first need to compute the estimated probability at hsGPA = 3.0, SAT = 1,200, and study = 10, second at
hsGPA = 3.0, SAT = 1,200, and study = 5, and then the former from the latter.

To obtain the first probability, we start by computing the linear function inside A(-):
—1.17+0.24 - hsGPA + 0.00058 - SAT + 0.073 - study =
—1.174+0.24 - 3.0 + 0.00058 - 1,200 + 0.073 - 10 = 0.9760.
Next, we plug this into the logit function:

exp(0.9760)

————— ~(.7263.
1+ exp(0.9760)

This is the estimated probability that a student-athlete with the given characteristics graduates in five years.

10



For the student-athlete who attended study hall five hours a week, we compute:
-1.17 4 0.24 - 3.0 4+ 0.00058 - 1,200 4 0.073 - 5 = 0.6110.

Evaluating the logit function at this value gives

exp(0.6110)

—~ = (.6482.
1 4 exp(0.6110)

Therefore, the difference in estimated probabilities is
0.7263 — 0.6482 = 0.0781,

which is under 0.10.

Note how far off the calculation would be if we simply use the coefficient on study (in the linear function inside
A) to conclude that the difference in probabilities is 0.073 - (10-5) = 0.365.

5 Computer Exercises

W17/C1
Use the data in pntsprd.wf1* for this exercise.

(i) The variable favwin is a binary variable if the team favoured by the Las Vegas point spread wins. A linear
probability model to estimate the probability that the favoured team wins is

P(favin = 1|spread) = By + 51 spread.

Ezxplain why, if the spread incorporates all relevant information, we expect Sy = 0.5.

If spread is zero, there is no favourite, and the probability that the team we (arbitrarily) label the favourite
should have a 50% chance of winning.

(ii) Estimate the model from part (i) by OLS. Test Hy : By = 0.5 against a two-sided alternative.

[=] Equation: EQ_LPM Workfile: PNTSPRD::Prtsprel, =N E=m==

[ViewIPmc]Objectl [PrintINameIFreezel [Estimate[FurecastIStats]Resids]

Dependent Variable: FAVWIN
Method: Least Squares
Date: 02M5M7 Time: 18:14
Sample: 1553

Included observations: 553

Wariable Coefficient Std. Error -Statistic Prob.
o 0.576949 0.028235 2043418 0.0000
SPREAD 0.019366 0.002339 8.280648 0.0000
R-gquared 0.110672 Mean dependentvar 0763110
Adjusted R-squared 0.109058 S.D. dependentvar 0.425559
S.E. ofregression 0.401684 Akaike info criterion 1.017307
Sum squared resid 88.90382 Schwarz criterion 1.032915
Log likelinood -279.2855 Hannan-Quinn criter. 1.023405
F-statistic 68.56913 Durbin-Watson stat 2111997
Prob(F-statistic) 0.000000

The linear probability model estimated by OLS gives

fmn =0.577 + 0.0194 spread
(0.028) (0.0023)

with n = 553 and R? = 0.111, where the usual standard errors are in parentheses. Using the usual
standard error, the ¢ statistic for Hy : 8o = 0.5 is

0.577 — 0.500
_— =2.
0.028 7,

which leads to rejecting Hy against a two-sided alternative at the 1% level (critical value ~ 2.58).

4N = 553, cross-sectional gambling point spread data for the 1994-1995 men’s college basketball seasons. The spread is for the
day before the game was played.
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(iii) Is spread statistically significant? What is the estimated probability that the favoured team wins when
spread = 107
The t—statistic for Hy : 81 = 0.0 is
0.0194 -0
0.0023

S0 as we expect, spread is very statistically significant.

= 8.4348,

If spread = 10 the estimated probability that the favoured team wins is

0.5774+0.0194 - 10 = 0.771.

(iv) Now, estimate a probit model for P(favwin = 1|spread). Interpret and test the null hypothesis that the
intercept is zero. [Hint: Remember that ®(0) = 0.5.]

(=) Equation: UNTITLED Workfile: PNTSPRD:Pntsprd\ o] -E- s

[VlewIProc]DbJect] lPrmtINameIFreue] lEstlmate[Forecast[stats]Reslds]

Dependent Variable: FAVWIN

Method: ML - Binary Probit (Newton-Raphson / Marquardt steps)
Date: 02M0M7 Time: 21:23

Sample: 1553

Included observations: 553

Convergence achieved after 5 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Siatistic Prob
[ -0.010593 0103747  -0.102101 09187
SPREAD 0.092463 0.012181 7.590712 0.0000
McFadden R-squared 0.129439 MWean dependentvar 0.763110
5.D. dependentvar 0425559 S.E. ofregression 0.399128
Akaike info criterion 0.960442 Sum squared resid 8777617
Schwarz criterion 0.976049 Log likelihood -263.5622
Hannan-Quinn criter 0968533 Deviance 5271244
Restr. deviance 605.4998 Restr. log likelihood -302.7499
LR statistic 78.37538 Avg. log likelihood -0.476604
Prob(LR statistic) 0.000000
Obs with Dep=0 131  Totalobs 553
Obs with Dep=1 422

In the Probit model
P(favwin = 1|spread) = ®(5y + S1spread),

where ®(-) denotes the standard normal cdf. If Sy = 0, then
P(favwin = 1|spread) = ®(S1spread)

and, in particular,
P(favwin = 1|spread = 0) = ®(0) = 0.5.

This is the analog of testing whether the intercept is 0.5 in the LPM. From the EViews output, the ¢
statistic (or, actually , the z statistic, only valid asymptotically) for testing Hy : So = 0 is only about
—0.102 so there are no grounds to reject Hy.

(v) Use the probit model to estimate the probability that the favoured team wins when spread = 10. Compare
this with the LPM estimate from part (iii).

When spread = 10 the predicted response probability from the estimated probit model is
®(—0.0106 + 0.0925 - 10) = $(0.9144) =~ 0.820.

This is somewhat above the estimate for the LPM.

(vi) Add the variables favhome, fav25, and und25 to the probit model and test joint significance of these
variables using the likelihood ratio test. (How many df are in the chi-square distribution?) Interpret this
result, focusing on the question of whether the spread incorporates all observable information prior to a
game.
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[=] Equation: EQ_PROBIT2 Workfile: PNTSPRD::Pntspre, o ===

[Viewl ProclObjed:] [Printl Namel Freeze] [Estimatel ForecastIStatsIResids]

Dependent Variable: FAVWIN

Method: ML - Binary Probit (Mewton-Raphson/ Marquardt steps)
Date: 0211517 Time: 18:47

Sample: 1553

Included observations: 553

Convergence achieved after 4 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.
C -0.055180 0128763  -0.428540 0.6683
SPREAD 0.087384 0.012949 6.786915 0.0000
FAVHOME 0.148575 0137057 1.084039 0.2783
FAV25 0.003068 0.158690 0.019333 0.98456
UND25 -0.219808 0.250584 -0.877183 0.3804
McFadden R-squared 0132479 Mean dependentvar 0763110
35.D. dependentvar 0425559 S.E. ofregression 0.399241
Akaike info criterion 0967963 Sum squared resid a7.34770
Schwarz criterion 1.006981 Loglikelihood -262.6418
Hannan-Quinn criter. 0.983207 Deviance 525.2835
Restr. deviance G05.4998 Restr. log likelihood -302.7499
LR statistic 80.21622 Avg. log likelihood -0.474940
Prob(LR statistic) 0.000000
Obs with Dep=0 131 Total obs 553
(Obs with Dep=1 422

When favhome, fav25, and und25 are added to the probit model, the value of the loglikelihood becomes
—262.64, while it used to be —263.56. Therefore, the likelihood ratio statistic is

2 - [—262.64-(—263.56)] = 2 - (263.56-262.64) = 1.84.

The p-value from the x2 (df = 3 because we add 3 variables) distribution is about 0.61, so favhome,
fav25, and und25 are jointly very insignificant. Once spread is controlled for, these other factors have no
additional power for predicting the outcome.

W17/C2

Use the data in loanapp.wf1® for this exercise; see also Computer Exercise C8 in Chapter 7.

(i) Estimate a probit model of approve on white. Find the estimated probability of loan approval for both
whites and nonwhites. How do these compare with the linear probability estimates?

[=) Equation: EQ_PROBIT Workfile: LOANAPP:Loanapp', =N = ==

[view] Proc| abject [{ print [Name | Freeze [ Estimate [Forecast stats | Resids

Dependent Yariable: APPROVE

Method: ML - Binary Probit (Newton-Raphson / Marquardt steps)
Sample (adjusted): 1 1988

Included observations: 1988 after adjustments

Convergence achieved after 3 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.
c 0.546946 0.075435 7.250562 0.0000
WHITE 0783615 0.086714 9.036738 0.0000
McFadden R-squared 0.053274 Mean dependentvar 0877264
S.D. dependentvar 0.328217 S.E.ofregression 0.320172
Akaike info criterion 0707023 Sum squared resid 2035846
Schwarz criterion 0.712652 Log likelihood -700.7813
Hannan-Quinn criter 0708091 Deviance 1401563
Restr. deviance 1480431 Restr. log likelihood -740.2157
LR statistic 78.86870 Awvg.log likelihood -0.352506
Prob(LR statistic) 0.000000
0Obs with Dep=0 244  Total obs 1988
Obs with Dep=1 1744

As there is only one explanatory variable that takes on just two values, there are only two different
predicted values: the estimated probabilities of loan approval for white and nonwhite applicants. Rounded
to three decimal places these are:

P(approve = 1|white = 0) = ®(By + f1 - 0) = ©(0.547) = 0.708,

P(approve = 1|jwhite = 1) = ®(By + 1 - 1) = ©(0.547 + 0.784) = 0.908,

5N = 1989, cross-sectional individual data. These data were originally used in a famous study by researchers at the Boston
Federal Reserve Bank. See A. Munnell, G.M.B. Tootell, L.E. Browne, and J. McEneaney (1996), “Mortgage Lending in Boston:
Interpreting HMDA Data”, American Economic Review 86, 25-53.
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for nonwhites and whites, respectively. Without rounding errors, these are identical to the fitted values
from the linear probability model. This must always be the case when the independent variables in
a binary response model are mutually exclusive and exhaustive binary variables. Then, the predicted
probabilities, whether we use the LPM, probit, or logit models, are simply the cell frequencies.

(In other words, 0.708 is the proportion of loans approved for nonwhites and 0.908 is the proportion
approved for whites.)

(i) Now, add the variables hrat, obrat, loanpre, unem, male, married, dep, sch, cosign, chist, pubrec,
mortlatl, mortlat2, and vr to the probit model. Is there statistically significant evidence of discrimination
against nonwhites?

r

[=] Equation: EQ_PROBIT2 Workfile: LOANAPP:Loanapp\ = =] =]
[mewIPmcIDmect] [PrmtINameIFreue] [Est\mate[Fme(astIStatsIRes\ds]
Dependent Variable: APPROVE
Method: ML - Binary Probit (Newton-Raphson / Marquardt steps)
Sample (adjusted): 1 1988
Included observations: 1971 after adjustments
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian
Variable Coefficient Std. Error z-Statistic Prob.
c 2.062327 0.313176 6.585194 0.0000
WHITE 0520253 0.096959 5.365707 0.0000
HRAT 0.007876 0.006962 1131394 0.2579
OBRAT -0.027692 0.006049  -4577783 0.0000
LOANPRC -1.011969 0.237240  -4.265600 0.0000
UNEM -0.036685 0.017481  -2.098594 0.0359
MALE -0.037001 0.109927  -0.336599 0.7364
MARRIED 0.265747 0.094252 2319528 0.0048
DEP -0.049578 0.039057  -1.289304 0.2043
SCH 0.014650 0.095842 0.152851 0.8785
COSIGN 0.086071 0.245751 0.350238 07262
CHIST 0.585281 0.095971 6.098491 0.0000
PUBREC -0778T41 0126320 -6.154823 0.0000
MORTLAT -0.167624 0.253113  -0.741265 0.4585
MORTLAT2 -0.494356 0.326556  -1513847 0.1301
YR -0.201082 0.081493  -2.467220 0.0136
McFadden R-squared 0186602 Mean dependentvar 0876205
S.D. dependentvar 0.329431 S.E. ofregression 0.299475
Akaike info criterion 0625338 Sum squared resid 1753347
Schwarz criterion 0.670686 Log likelihood -600.2710
Hannan-Quinn criter 0642002 Deviance 1200542
Resir. deviance 1475.959 Restr. log likelihood -737.9793
LR statistic 275.4167 Avg.log likelihood -0.304551
Prob(LR statistic) 0.000000
Obs with Dep=0 244  Total obs 1971
Obs with Dep=1 1727

With the set of controls added, the probit estimate on white becomes about 0.520 with the standard error
of around 0.097. Therefore, there is still very strong evidence of discrimination against nonwhites.

[We can divide this by 2.5 to make it roughly comparable to the LPM estimate in part (4ii) of Computer
Exercise C7.8: 0.520/2.5 =~ 0.208, compared with 0.129 in the LPM. ]

(iii) Estimate the model from part (ii) by logit. Compare the coefficient on white to the probit estimate.

(=] Equation: EQ_LOGIT2 Workdile: LOANAPP:Loanapph, =N e ==

[ViewIProc]Ome:t] lPrint[NameIFreeze] lEstimatelFarecast[stats[Re:ids]

Dependent Variable: APPROVE

Method: ML - Binary Logit (Newton-Raphson / Marquardt steps)
Sample (adjusted). 1 1988

Included observations: 1971 after adjustments

Convergence achieved after 4 iterations

Coefficient covariance computed using observed Hessian

Wariable Coeflicient Std. Error z-Statistic Prob.

c 2801710 0.594707 6.392572 0.0000

WHITE 0937764 0.172004 5423603 0.0000

HRAT 0.013263 0.012880 1.029720 0.2031

OBRAT -0.053034 0.011280 -4701462 0.0000

LOANPRC -1.904951 0.460443  -4137212 0.0000

UNEM -0.066579 0.032809 -2.029310 0.0424

WALE -0.066385 0.206428  -0.321588 07478

MARRIED 0.503282 0.177998 2.827452 0.0047

DEP -0.090734 0073334  -1.237261 0.2160

SCH 0.041229 0.178404 0.231002 0.8172

COSIGN 0.132059 0.446094 0.296034 07672

CHIST 1.066577 0171212 6.229570 0.0000

PUBREC -1.340665 0217366 -6.167781 0.0000

MORTLAT1 -0.309882 0.463520  -0.668541 0.5038

MORTLAT2 -0.894675 0568581  -1.572522 0.1156

VR -0.349828 0153725  -2.275671 0.0229

McFadden R-squared 0186297 MWean dependentvar 0876205

S.D. dependent var 0.329431 S.E ofregression 0.299487

Akaike info criterion 0625567 Sum squared resid 1753487

Schwarz criterion 0.670915 Log likelihood -600.4962

Hannan-Quinn criter. 0.642230 Deviance 1200.992

Restr. deviance 1475959 Restr. log likelihood -737.9793

LR statistic 2749664 Avg. log likelihood -0.304666
Prab(LR statistic) 0.000000

Obs with Dep=0 244 Total obs 1971
Obs with Dep=1 1727
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(iv)

When we use logit instead of probit, the coefficient on white becomes 0.938 with the standard error of
0.173.

[Recall that to make probit and logit estimates roughly comparable, we can multiply the logit estimates
by 0.625. The scaled logit coefficient becomes: 0.625 - 0.938 = 0.586, which is reasonably close to the
probit estimate of 0.520. A better comparison would be to compare the predicted probabilities by setting
the other controls at interesting values, such as their average values in the sample.]

Use equation
n~t Z {G[Bo +B1@i + -+ Bre1@in—1 + Brlow + D] - G[Bo + B+ 4 Bk +Bkck} } (17.17)
i1

to estimate the sizes of the discrimination effects for probit and logit.

Note that (17.17) is the average partial effect for a discrete explanatory variable. Unfortunately, it seems
there is no build-in function for this measure in EViews, so we need to calculate it ourselves using the
estimation results from the “augmented” probit and logit models. Figure 5 presents a code to carry out
such computations.

We consider all the variables but white. Instead, for each individual we consider two counterfactual
scenarios: as if he or she was white and otherwise (new generated variables whitel and white0), which
we use to create two groups (variables whitel and variables_white0). Then, we use the coefficients
from two estimations (coef _probit and coef_logit) to sum all the variables multiplied by their respective
coeflicient.

This gives us the arguments inside G(-) in (17.17). To evaluate G(-) we need to apply the appropriate
function for each model. For probit, it is ®(z), the cdf of the standard normal distribution; for logit, it is
ﬁp(_z). Finally, we subtract the vector with G(-) applied to the sum under the “nonwhites scenario”
from that under the “whites scenario” and average out. The obtained values are APE,,..p;; = 0.1042 and

APE,4: = 0.1009, hence quite similar.
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Program: LOANAPP - (hi\desktop'loanapp.prg) EI@
Printl Savel Savehs I Cutl Copy[ PasteIInserthtI Find I ReplaceIWrapﬂ-I LineNum+f—I Encrypt

bquation eq_probit binary(d=n) approve ¢ white hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 vr
equation eq_logit binary(d=I} approve ¢ white hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 vr

vector{16) coef_probit
coef_probit = eq_probit. @coefs

vector(16) coef_logit
coef_logit= eq_logit @coefs

counterfactual scenarios
genr white1=1
genr whiteQ =0

all variables under counterfactual scenarios
group variables_white1 white1 hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 wr
group variables_white0 white0 hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 wr

sum inside the G functions
series sum_white0_probit
series sum_white1_probit
series sum_white0_logit
series sum_white1_logit

start summing with the intercept (beta0)
sum_white0_probit = coef_probit(1)
sum_white1_probit = coef_probit(1)
sum_white0_logit = coef_logit(1)
sum_white1_logit = coef_logit(1)

add subsequentvariables multiplied by their coefficients
(there are more coefs because the one for the constant term is also there - hence li-1 for the grouped variables)
forli=21t0 16
series temp = coef_probitliy* variables_white0(li-1)
sum_white0_probit = sum_white0_probit + temp

series temp = coef_probit(liy* variables_white1(li-1)
sum_white1_probit = sum_white1_probit + temp

series temp = coef_logit(li)* variables_white0{li-1)
sum_white0_logit = sum_white0_logit +temp

series temp = coef_logit(li)* variables_white1{li-1)
sum_white1_logit = sum_white1_logit + temp
next

for probit: compute G as the cdf of the standard normal distribution
series G_white0_probit = @cnorm(sum_white0_probit )

series G_white1_probit = @cnorm(sum_white1_probit )

series diff_probit = G_white1_probit - G_white0_probit

scalar apf_probit = @mean(diff_probit )

for logit: compute G as the logistic function

series G_white0_logit = 1/(1+@exp(-sum_white0_logit))
series G_white1_logit = 1/{1+@exp(-sum_white1_logit))
series diff_logit = G_white1_logit - G_white0_logit
scalar apf_logit= @mean(difi_logit )

Figure 5: EViews code for computing APE for probit and logit models, where we are interested in the effect of
being white or not on loan approval.
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