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1 Summary

• Binary Response Model: A model for a binary (or dummy, i.e. with two possible outcomes 0 and 1)
dependent variable.

• Response Probability: In a binary response model, the probability that the dependent variable takes
on the value one, conditional on explanatory variables.

• Linear Probability Model: The multiple linear regression model with a binary dependent variable,
where the response probability is linear in the parameters.

[bad idea! the probability can be estimated outside the [0, 1] interval]

• Logit Model: A model for binary response where the response probability is the logit function evaluated
at a linear function of the explanatory variables.

G(z) =
1

1− exp(−z)
=

exp(z)

1 + exp(z)
.

• Probit Model: A model for binary responses where the response probability is the standard normal
cumulative distribution function (CDF) evaluated at a linear function of the explanatory variables.

G(z) = Φ(z) =

∫ z

−∞
φ(v)dv =

∫ z

−∞

1√
2π

exp

(
−v

2

2

)
dv.

• Latent Variable Model: A model where the observed dependent variable is assumed to be a function
of an underlying latent, or unobserved, variable.

[interpretation of binary logit/probit model]

• Partial Effect at the Average (PEA): In models with nonconstant partial effects, the partial effect
evaluated at the average values of the explanatory variables.

[Substitute averages x̄1, . . . , x̄k, where k is the number of regressors.]

• Average Partial Effect (APE): For nonconstant partial effects, the partial effect averaged across the
specified population.

[ 1n
∑n
i=1

∂P(yi=1|xi)
∂xj

= 1
n

∑n
i=1 g(β̂0 + β̂1xi1 + · · ·+ β̂kxik) · βj ]

• Akaike Information Criterion (AIC): A general measure for relative quality of models estimated with
maximum likelihood, computed as

AIC = −2
lnL

n
+ 2

k

n
,

where lnL is the maximum value of likelihood, n is the number of observations and k is the number of
parameters.

• Schwarz Criterion (SC): A general measure for relative quality of models estimated with maximum
likelihood, computed as

SC = −2
lnL

n
+ ln(n)

k

n
,

where lnL is the maximum value of likelihood, n is the number of observations and k is the number of
parameters.
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• Pseudo R-Squared (McFadden R-Squared): A goodness-of-fit measure that is particularly used for
logit/probit models.

McFadden R-Squared = 1− lnL

lnL0
,

where lnL is the maximum value of loglikelihood and lnL0 is the maximum value of likelihood in model
with only a constant term.

[not only a relative quality measure, unlike AIC or SC]

• Percent Correctly Predicted (Hit Rate): In a binary response model, the percentage of times the
prediction of zero or one coincides with the actual outcome. Percentage of observations with ỹi = yi,
where

ỹi =

{
1, if P̂(yi = 1|xi) = G(x′iβ̂) > c,

0, if P̂(yi = 1|xi) = G(x′iβ̂) ≤ c,

where c is typically chosen as 0.5.

2 Extra Topics

2.1 The Perfect Classifier Problem

Recall: the loglikelihood

lnL(β) = ln p(y1, . . . , yn|x1, . . . , xn)

=

n∑
i=1

{
yi ln[G(x′iβ)]︸ ︷︷ ︸

(∗)

+ (1− yi) ln[1−G(x′iβ)]︸ ︷︷ ︸
(∗∗)

}
. (1)

We have
0 < G(x′iβ) < 1,

hence
−∞ < ln[G(x′iβ)] < 0.

Notice that

yi = 1⇒ (∗) < 0 & (∗∗) = 0,

yi = 0⇒ (∗) = 0 & (∗∗) < 0.

Perfect fit:

yi = 1 ⇐⇒ G(x′iβ) = 1,

yi = 0 ⇐⇒ G(x′iβ) = 0.

This could happen only when

yi = 1 ⇐⇒ x′iβ =∞, (2)

yi = 0 ⇐⇒ x′iβ = −∞. (3)

We say that the loglikelihood (1) is bounded above by 0, and it achieves this bound if (2) and (3) hold.

Now, suppose that there is some linear combination of the independent variables, say x′iβ
•, such that

yi = 1 ⇐⇒ x′iβ
• > 0, (4)

yi = 0 ⇐⇒ x′iβ
• < 0. (5)

In other words, there is some range of the regressor(s) for which yi is always 1 or 0. Then, we say that x′iβ
•

describes a separating hyperplane (see Figure 1) and there is complete separation of the data. x′iβ
• is

said to be a perfect classifier, since it allows us to predict yi with perfect accuracy for every observation.

Problem? Yes, for ML estimation! Then, it is possible to make the value of lnL arbitrarily close to 0 (the
upper bound) by choosing β arbitrarily large (in an absolute sense)1. Hence, no finite ML estimator exists.

1Formally: by setting β = γβ• and letting γ → ∞.
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Figure 1: Figure 11.2 from Davidson and MacKinnon (1999), “Econometric Theory and Methods”: A perfect
classifier yields a separating hyperplane.

This is exactly what any nonlinear maximization algorithm will attempt to do if there exists a vector β• for
which conditions (4) and (5) are satisfied. Because of the numerical limitations, the algorithm will eventually
terminate (with some numerical error) at a value of lnL slightly less than 0.

This is likely to occur in practice when the sample is very small, when almost all of the yi are equal to 0 or
almost all of them are equal to 1, or when the model fits extremely well.

The next topic is designed to give you a feel for the circumstances in which ML estimation is likely to fail
because there is a perfect classifier.

2.2 Simulation from the latent variable model2

Consider the latent variable model

y∗i = β0 + β1xi + ei,

ei ∼ N (0, 1),

yi =

{
1, if y∗i > 0,

0, if y∗i ≤ 0

Suppose that xi ∼ N (0, 1). We will generate 5, 000 samples of 20 observations on (xi, yi) pairs in the following
way:

• 1, 000 assuming that β0 = 0 and β1 = 1;

• 1, 000 assuming that β0 = 1 and β1 = 1;

• 1, 000 assuming that β0 = −1 and β1 = 1;

• 1, 000 assuming that β0 = 0 and β1 = 2;

• 1, 000 assuming that β0 = 0 and β1 = 3.

For each of the 5, 000 samples, we will attempt to estimate a probit model. We are interested in the following
question: In each of the five cases, what proportion of the time does the estimation fail because of perfect
classifiers? We also want to explain why there will be more failures in some cases than in others. Next, we will
repeat this exercise for five sets of 1, 000 samples of size 40, with the same parameter values. This will allow us
to draw a conclusion about the effect of sample size on the perfect classifier problem.

Figure 2 presents an EViews code for the first case (N = 20 with β0 and β1).

2Based on Exercise 11.5 from Davidson and MacKinnon (1999), “Econometric Theory and Methods”.
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Figure 2: EViews code for simulation of M = 1, 000 scenarios of binary response model with N = 20 independent
variables, with β0 = 0 and β1 = 1, and for probit estimation. But don’t worry, you will not be asked for EViews
commands at the exam!
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Figure 3: Manually changing of maximum errors before halting (EViews Run Program tab).

Figure 4: EViews Error Message about complete separation problem in the probit estimation.

If you are interested, you can check the results of each probit estimation: the coefficients estimates, their standard
errors and the loglikelihood values are stored in matrices eq coeff, eq stderrs and eq logl, respectively. But
what we are truly after, is the error count variable, err no1, which reports how many times an estimation error
occurred. Notice, that we used the command setmaxerr to set the maximum number of error that the program
may encounter before execution is halted. Alternatively, you can specify it in the box showing up after clicking
on the run button, as in Figure 3. Without changing the value of maximum error allowed, the program would
shortly break with the error message reporting the perfect separation problem, similar to the one from Figure
4.

The table below shows the proportion of the time that perfect classifiers were encountered for each of the five
cases and each of the two sample sizes.

Parameters n = 20 n = 40
β0 = 0, β1 = 1 0.012 0.000
β0 = 1, β1 = 1 0.074 0.001
β0 = −1, β1 = 1 0.056 0.002
β0 = 0, β1 = 2 0.143 0.008
β0 = 0, β1 = 3 0.286 0.052

The proportion of samples with perfect classifiers increases as both β0 and β1 increase in absolute value. When
β0 = 0 , the unconditional expectation of yi is 0.5.
As β0 increases in absolute value, this expectation becomes larger, and the proportion of 1s in the sample
increases.
As β1 becomes larger in absolute value, the model fits better on average, which obviously increases the chance
that it fits perfectly.
The results for parameters (1, 1) are almost identical to those for parameters (−1, 1) because, with xi having
mean 0, the fraction of 1s in the samples with parameters (1, 1) is the same, on average, as the fraction of 0s in
the samples with parameters (−1, 1).

Comparing the results for n = 20 and n = 40, it is clear that the probability of encountering a perfect classifier
falls very rapidly as the sample size increases.
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3 Lecture Problems

Exercise 1.

This exercise is about the reason why we can use the standard normal (or standard logistic) distribution. Con-
sider the binary probit model

P(yi = 1|xi) = Φ(β0 + β1zi),

P(yi = 0|xi) = 1− Φ(β0 + β1zi),

where Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution. This stems from
the assumption that

y∗i = β0 + β1zi + ei,

where ei is an error term with standard normal distribution (independent of xi), where

yi = I{y∗i > 0} =

{
1 if y∗i > 0,

0 if y∗i ≤ 0.

Suppose that we would assume that ei ∼ N (µ, σ2), where µ and σ2 are parameters to be estimated (instead of
setting µ = 0 and σ = 1).

(1) Show that

P(yi = 1|xi) = Φ

(
β0 + β1zi + µ

σ

)
,

P(yi = 0|xi) = 1− Φ

(
β0 + β1zi + µ

σ

)
.

Hint: use the ‘standard’ trick that ei−µ
σ ∼ N (0, 1) if ei ∼ N (µ, σ2).

We have

P(yi = 1|xi) = P(y∗i > 0|xi)
= P(x′iβ + ei > 0|xi)
= P(ei > −x′iβ|xi)

= P
(
ei − µ
σ

>
−x′iβ − µ

σ

∣∣∣∣xi)
(∗)
= P

(
ei − µ
σ

<
x′iβ + µ

σ

∣∣∣∣xi)
(∗∗)
= P

(
ei − µ
σ

≤ x′iβ + µ

σ

∣∣∣∣xi)
(∗∗∗)
= P

(
ei − µ
σ

≤ x′iβ + µ

σ

)
= Φ

(
x′iβ + µ

σ

)
,

where we used that the standard normal distribution of ei−µ
σ is: (∗) symmetric around 0, (∗∗) continuous

and (∗∗∗) independent of xi.

Here: x′iβ = β0 + β1zi, so that

P(yi = 1|xi) = Φ

(
β0 + β1zi + µ

σ

)
.

Further, we have either yi = 0 or yi = 1, so that

P(yi = 0|xi) + P(yi = 1|xi) = 1,

so that

P(yi = 0|xi) = 1− P(yi = 1|xi) = 1− Φ

(
β0 + β1zi + µ

σ

)
.
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(2) What happens to P(yi = 1|xi) if we change β0 and µ into β0 + 1 and µ− 1?

We have

P(yi = 1|xi) = Φ

(
(β0 + 1) + β1zi + (µ− 1)

σ

)
= Φ

(
β0 + β1zi + µ

σ

)
,

so nothing happens to P(yi = 1|xi) in this case.

Therefore β0 and µ are not identified: the model with parameters β0 + a and µ − a (−∞ < a < ∞)
is the same Data Generating Process (DGP) as the model with parameters β0 and µ: it yields the same
probabilities P(yi = 0|xi) and P(yi = 1|xi) for each observation, and therefore exactly the same Bernoulli
distributions and the same properties of the yi (conditionally upon xi). Even if we would have infinitely
many observations, we could not distinguish between the model with parameters β0 and µ and the model
with parameters β0 + a and µ− a. Therefore we can set µ = 0 without loss of generality.

(3) What happens to P(yi = 1|xi) if we change β0, β1, µ and σ into 2β0, 2β1, 2µ and 2σ?

We have

P(yi = 1|xi) = Φ

(
2β0 + 2β1zi + 2µ

2σ

)
= Φ

(
β0 + β1zi + µ

σ

)
,

so nothing happens to P(yi = 1|xi) in this case.

Therefore β0, β1, µ and σ are not identified: the model with parameters b · β0, b · β1 , b · µ and b · σ is
(b > 0) is the same Data Generating Process (DGP) as the model with parameters β0, β1, µ and σ: it
yields the same probabilities P(yi = 0|xi) and P(yi = 1|xi) for each observation, and therefore exactly the
same Bernoulli distributions and the same properties of the yi (conditional upon xi). Even if we would
have infinitely many observations, we could not distinguish between the model with parameters β0, β1, µ
and σ and the model with parameters b · β0, b · β1 , b ·µ and b · σ. Therefore we can set σ = 1 without loss
of generality.

(4) What is the difference in P(yi = 1|xi) between the model with parameters β0, β1, µ and σ and the model
with parameters b · (β0 + a), b · β1, b · (µ− a) and b · σ (with −∞ < a <∞ and b > 0)?

We have

P(yi = 1|xi) = Φ

(
b · (β0 + a) + b · β1zi + b · (µ− a)

b · σ

)
= Φ

(
β0 + β1zi + µ

σ

)
,

So there is no difference in P(yi = 1|xi) between the model with parameters β0, β1, µ and σ and the model
with parameters b · (β0 + a), b · β1, b · (µ− a) and b · σ (with −∞ < a <∞ and b > 0).

Therefore β0, β1, µ and σ are not identified. We we can set µ = 0 and σ = 1 without loss of generality.
Only after imposing these restrictions µ = 0 and σ = 1, the parameters β0 and β1 are identified: a different
value of (β0, β1) implies a different distribution of yi (conditional upon xi).

Execise 2.

The data are in the EViews file bank employees.wf1.

(1) Change the threshold from 0.5 to ȳ = 1
n

∑n
i=1 yi. Compare the percentage correctly predicted between the

binary probit and binary logit model.

We have n = 447 observations, where yi = 0 for 363 observations and yi = 1 for 84 observations. So
y = 84/447 = 0.1879.
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Percentage correctly predicted = 92.17% in both models.

Note: this threshold 0.1878 (instead of 0.5) implies that we predict ỹi = 1 more often (and ỹi = 0 less
often). Now we have 109 predictions ỹi = 1 instead of 50. In this case this threshold 0.1878 leads to a
better percentage correctly predicted of 92.17% instead of 89.71%; the latter does not need to be the case
in general.

(2) Change the threshold from 0.5 to 0.4. Compare the percentage correctly predicted between the binary probit
and binary logit model.

Percentage correctly predicted = 89.71% in binary probit model.
Percentage correctly predicted = 92.17% in binary logit model.
So, for this value of the threshold 0.4 the binary logit model has a better percentage correctly predicted
than the binary probit model.

(3) Can you find a threshold so that
∑n
i=1 ỹi =

∑n
i=1 yi? Motivate your answer.

No. The reason is that the explanatory variable education (which is the only explanatory variable in this

model) takes a finite number of values, so that the estimated probability P̂(yi = 1|xi) is exactly the same
for groups of individuals that have exactly the same education.

We have
∑n
i=1 yi = 84 observations with yi = 1 in the actual dataset.

There are 50 individuals with education ≥ 17; these have P̂(yi = 1|xi) > 0.5 in the binary logit model.

There are 59 individuals with education = 16; these have P̂(yi = 1|xi) = 0.4036 in the binary logit model.
So:
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• We have 50 predictions with ỹi = 1, if we take a threshold like 0.5, so that each individual with
education ≥ 17 gets prediction ỹi = 1 and so that each individual with education ≤ 16 gets prediction
ỹi = 0.

• We have 50+59 = 109 predictions with ỹi = 1, if we take a threshold like 0.4, so that each individual
with education ≥ 16 gets prediction ỹi = 1 and so that each individual with education ≤ 15 gets
prediction ỹi = 0.

• We can not get exactly 84 observations with ỹi = 1.

(4) Change the value of education of the last observation from 12 to 120 (to create an extreme outlier with
enormous education and yi = 0).
Note: first you may need to click the Edit +- button above the spreadsheet with values. Re-estimate the
binary probit and logit models. Compare the percentage correctly predicted between the binary probit and
binary logit model. Can you explain the difference in quality between the probit and logit models?

Note: Here we have a binary logit/probit model, where we have added an outlier by changing the education
of the last observation to 120 (instead of 12), where yi = 0 for this last observation. So, we created an
extreme observation with an extremely high value of education and still yi = 0. The person of the last
observation has an administrative job, not a management job.

Note: if the last observation would have yi = 1, then this would not be an outlier! Then the extremely
high value of education would simply ‘match’ with yi = 1, so that changing 12 into 120 would hardly
affect the parameter estimates.

For threshold = 0.5 we obtain:

Now we see a substantial difference in percentage correctly predicted between the binary probit model and
the binary logit model: 80.98% versus 88.37%. (The binary probit model does not even beat the approach
of simply predicting ỹi = 0 for each observation, which has percentage correctly predicted of 81.21%.)

Explanation: the tails of the logistic distribution are fatter than the tails of the normal distribution:
outliers can occur in the logistic distribution, so that the parameter estimates are relatively less affected
by outliers. In the normal distribution, the presence of one outlier can have a huge effect on the parameter
estimates.

Roughly stated, in the binary probit model the parameter estimates β̂0 and β̂1 are enormously changed
in order to “keep the last observation with (education = 120, y = 0) out of the extreme tail”.

4 Exercises3

W17/1

(i) For a binary response y, let ȳ be the proportion of ones in the sample (which is equal to the sample average
of the yi). Let q̂0 be the percent correctly predicted for the outcome y = 0 and let q̂1 be the percent correctly
predicted for the outcome y = 1. If p̂ is the overall percent correctly predicted, show that p̂ is a weighted
average of q̂0 and q̂1:

p̂ = (1− ȳ)q̂0 + ȳq̂1.

Let n0 denote the number of observations when yi = 0, n1 be the number of observations when yi = 1 and
n = n0 + n1 the sample size. Moreover, let m0 denote the number (not the percent) correctly predicted

3In “WX/Y” W refers to the book by Wooldridge (Edition 5, but NOT the international edition, which my have slightly
different numbers/stories in the exercises than the international edition), X to the chapter number there and Y to the exercise
number.
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when yi = 0 (so the prediction is also zero) and let m1 be the number correctly predicted when yi = 1.
Then, the proportion correctly predicted is m0+m1

n . By simple algebra, we can write this as follows:

m0 +m1

n
=
n0
n
· m0

n0
+
n1
n
· m1

n1
= (1− ȳ)

m0

n0
+ ȳ

m1

n1
,

where we have used the fact that ȳ = n1

n (the proportion of the sample with yi = 1) and 1− ȳ = n0

n (the
proportion of the sample with yi = 0).

Next, notice that m0

n0
is the proportion correctly predicted when yi = 0, and m1

n1
is the proportion correctly

predicted when yi = 1. Therefore, we have

m0 +m1

n
= (1− ȳ)

m0

n0
+ ȳ

m1

n1
.

Multiplying both sides by 100 yields

p̂ = (1− ȳ)q̂0 + ȳq̂1, (6)

where we use the fact that, by definition,

p̂ = 100 · m0 +m1

n
, q̂0 = 100 · m0

n0
, q̂1 = 100 · m1

n1
.

(ii) In a sample of 300, suppose that ȳ = 0.70, so that there are 210 outcomes with y1 = 1 and 90 with yi = 0.
Suppose that the percent correctly predicted when y = 0 is 80, and the percent correctly predicted when
y = 1 is 40. Find the overall percent correctly predicted.

We just use formula (6) from part (i):

p̂ = 0.30 · 80 + 0.70 · 40 = 52.

Therefore, overall we correctly predict only 52% of the outcomes. This is because, while 80% of the time
we correctly predict y = 0, the observations where yi = 0 account for only 30 percent of the outcomes.
More weight (i.e. 0.70) is given to the predictions when yi = 1, and we do much less well predicting that
outcome (getting it right only 40% of the time).

W17/2

Let grad be a dummy variable for whether a student-athlete at a large university graduates in five years. Let
hsGPA and SAT be high school grade point average and SAT score, respectively. Let study be the number of
hours spent per week in an organized study hall. Suppose that, using data on 420 student-athletes, the following
logit model is obtained:

P̂(grad = 1|hsGPA, SAT, study) = Λ(−1.17 + 0.24hsGPA+ 0.00058SAT + 0.073 study),

where Λ(z) = exp(z)/[1 + exp(z)] is the logit function. Holding hsGPA fixed at 3.0 and SAT fixed at 1, 200,
compute the estimated difference in the graduation probability for someone who spent 10 hours per week in study
hall and someone who spent 5 hours per week.

We first need to compute the estimated probability at hsGPA = 3.0, SAT = 1, 200, and study = 10, second at
hsGPA = 3.0, SAT = 1, 200, and study = 5, and then the former from the latter.

To obtain the first probability, we start by computing the linear function inside Λ(·):

−1.17 + 0.24 · hsGPA+ 0.00058 · SAT + 0.073 · study =

−1.17 + 0.24 · 3.0 + 0.00058 · 1, 200 + 0.073 · 10 = 0.9760.

Next, we plug this into the logit function:

exp(0.9760)

1 + exp(0.9760)
≈ 0.7263.

This is the estimated probability that a student-athlete with the given characteristics graduates in five years.
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For the student-athlete who attended study hall five hours a week, we compute:

–1.17 + 0.24 · 3.0 + 0.00058 · 1, 200 + 0.073 · 5 = 0.6110.

Evaluating the logit function at this value gives

exp(0.6110)

1 + exp(0.6110)
≈ 0.6482.

Therefore, the difference in estimated probabilities is

0.7263− 0.6482 = 0.0781,

which is under 0.10.

Note how far off the calculation would be if we simply use the coefficient on study (in the linear function inside
Λ) to conclude that the difference in probabilities is 0.073 · (10–5) = 0.365.

5 Computer Exercises

W17/C1

Use the data in pntsprd.wf14 for this exercise.

(i) The variable favwin is a binary variable if the team favoured by the Las Vegas point spread wins. A linear
probability model to estimate the probability that the favoured team wins is

P(favin = 1|spread) = β0 + β1spread.

Explain why, if the spread incorporates all relevant information, we expect β0 = 0.5.

If spread is zero, there is no favourite, and the probability that the team we (arbitrarily) label the favourite
should have a 50% chance of winning.

(ii) Estimate the model from part (i) by OLS. Test H0 : β0 = 0.5 against a two-sided alternative.

The linear probability model estimated by OLS gives

̂favwin =0.577 + 0.0194 spread

(0.028) (0.0023)

with n = 553 and R2 = 0.111, where the usual standard errors are in parentheses. Using the usual
standard error, the t statistic for H0 : β0 = 0.5 is

0.577− 0.500

0.028
= 2.75,

which leads to rejecting H0 against a two-sided alternative at the 1% level (critical value ≈ 2.58).

4N = 553, cross-sectional gambling point spread data for the 1994–1995 men’s college basketball seasons. The spread is for the
day before the game was played.
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(iii) Is spread statistically significant? What is the estimated probability that the favoured team wins when
spread = 10?

The t–statistic for H0 : β1 = 0.0 is
0.0194− 0

0.0023
= 8.4348,

so as we expect, spread is very statistically significant.

If spread = 10 the estimated probability that the favoured team wins is

0.577 + 0.0194 · 10 = 0.771.

(iv) Now, estimate a probit model for P (favwin = 1|spread). Interpret and test the null hypothesis that the
intercept is zero. [Hint: Remember that Φ(0) = 0.5.]

In the Probit model
P(favwin = 1|spread) = Φ(β0 + β1spread),

where Φ(·) denotes the standard normal cdf. If β0 = 0, then

P(favwin = 1|spread) = Φ(β1spread)

and, in particular,
P(favwin = 1|spread = 0) = Φ(0) = 0.5.

This is the analog of testing whether the intercept is 0.5 in the LPM. From the EViews output, the t
statistic (or, actually , the z statistic, only valid asymptotically) for testing H0 : β0 = 0 is only about
−0.102 so there are no grounds to reject H0.

(v) Use the probit model to estimate the probability that the favoured team wins when spread = 10. Compare
this with the LPM estimate from part (iii).

When spread = 10 the predicted response probability from the estimated probit model is

Φ(−0.0106 + 0.0925 · 10) = Φ(0.9144) ≈ 0.820.

This is somewhat above the estimate for the LPM.

(vi) Add the variables favhome, fav25, and und25 to the probit model and test joint significance of these
variables using the likelihood ratio test. (How many df are in the chi-square distribution?) Interpret this
result, focusing on the question of whether the spread incorporates all observable information prior to a
game.
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When favhome, fav25, and und25 are added to the probit model, the value of the loglikelihood becomes
–262.64, while it used to be −263.56. Therefore, the likelihood ratio statistic is

2 · [−262.64–(−263.56)] = 2 · (263.56–262.64) = 1.84.

The p-value from the χ2
3 (df = 3 because we add 3 variables) distribution is about 0.61, so favhome,

fav25, and und25 are jointly very insignificant. Once spread is controlled for, these other factors have no
additional power for predicting the outcome.

W17/C2

Use the data in loanapp.wf15 for this exercise; see also Computer Exercise C8 in Chapter 7.

(i) Estimate a probit model of approve on white. Find the estimated probability of loan approval for both
whites and nonwhites. How do these compare with the linear probability estimates?

As there is only one explanatory variable that takes on just two values, there are only two different
predicted values: the estimated probabilities of loan approval for white and nonwhite applicants. Rounded
to three decimal places these are:

P(approve = 1|white = 0) = Φ(β0 + β1 · 0) = Φ(0.547) = 0.708,

P(approve = 1|white = 1) = Φ(β0 + β1 · 1) = Φ(0.547 + 0.784) = 0.908,

5N = 1989, cross-sectional individual data. These data were originally used in a famous study by researchers at the Boston
Federal Reserve Bank. See A. Munnell, G.M.B. Tootell, L.E. Browne, and J. McEneaney (1996), “Mortgage Lending in Boston:
Interpreting HMDA Data”, American Economic Review 86, 25–53.
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for nonwhites and whites, respectively. Without rounding errors, these are identical to the fitted values
from the linear probability model. This must always be the case when the independent variables in
a binary response model are mutually exclusive and exhaustive binary variables. Then, the predicted
probabilities, whether we use the LPM, probit, or logit models, are simply the cell frequencies.

(In other words, 0.708 is the proportion of loans approved for nonwhites and 0.908 is the proportion
approved for whites.)

(ii) Now, add the variables hrat, obrat, loanprc, unem, male, married, dep, sch, cosign, chist, pubrec,
mortlat1, mortlat2, and vr to the probit model. Is there statistically significant evidence of discrimination
against nonwhites?

With the set of controls added, the probit estimate on white becomes about 0.520 with the standard error
of around 0.097. Therefore, there is still very strong evidence of discrimination against nonwhites.

[We can divide this by 2.5 to make it roughly comparable to the LPM estimate in part (iii) of Computer
Exercise C7.8: 0.520/2.5 ≈ 0.208, compared with 0.129 in the LPM. ]

(iii) Estimate the model from part (ii) by logit. Compare the coefficient on white to the probit estimate.
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When we use logit instead of probit, the coefficient on white becomes 0.938 with the standard error of
0.173.

[Recall that to make probit and logit estimates roughly comparable, we can multiply the logit estimates
by 0.625. The scaled logit coefficient becomes: 0.625 · 0.938 ≈ 0.586, which is reasonably close to the
probit estimate of 0.520. A better comparison would be to compare the predicted probabilities by setting
the other controls at interesting values, such as their average values in the sample.]

(iv) Use equation

n−1
n∑
i=1

{
G
[
β̂0 + β̂1xi1 + · · ·+ β̂k−1xik−1 + β̂k(ck + 1)

]
−G

[
β̂0 + β̂1xi1 + · · ·+ β̂k−1xik−1 + β̂kck

]}
(17.17)

to estimate the sizes of the discrimination effects for probit and logit.

Note that (17.17) is the average partial effect for a discrete explanatory variable. Unfortunately, it seems
there is no build-in function for this measure in EViews, so we need to calculate it ourselves using the
estimation results from the “augmented” probit and logit models. Figure 5 presents a code to carry out
such computations.

We consider all the variables but white. Instead, for each individual we consider two counterfactual
scenarios: as if he or she was white and otherwise (new generated variables white1 and white0), which
we use to create two groups (variables white1 and variables white0). Then, we use the coefficients
from two estimations (coef probit and coef logit) to sum all the variables multiplied by their respective
coefficient.

This gives us the arguments inside G(·) in (17.17). To evaluate G(·) we need to apply the appropriate
function for each model. For probit, it is Φ(z), the cdf of the standard normal distribution; for logit, it is

1
1+exp(−z) . Finally, we subtract the vector with G(·) applied to the sum under the “nonwhites scenario”

from that under the “whites scenario” and average out. The obtained values are APEprobit = 0.1042 and
APElogit = 0.1009, hence quite similar.
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Figure 5: EViews code for computing APE for probit and logit models, where we are interested in the effect of
being white or not on loan approval.
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