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A B S T R A C T   

Combining biomechanical modelling of left ventricular (LV) function and dysfunction with cardiac magnetic 
resonance (CMR) imaging has the potential to improve the prognosis of patient-specific cardiovascular disease 
risks. Biomechanical studies of LV function in three dimensions usually rely on a computerized representation of 
the LV geometry based on finite element discretization, which is essential for numerically simulating in vivo 
cardiac dynamics. Detailed knowledge of the LV geometry is also relevant for various other clinical applications, 
such as assessing the LV cavity volume and wall thickness. Accurately and automatically reconstructing 
personalized LV geometries from conventional CMR images with minimal manual intervention is still a chal-
lenging task, which is a pre-requisite for any subsequent automated biomechanical analysis. We propose a deep 
learning-based automatic pipeline for predicting the three-dimensional LV geometry directly from routinely- 
available CMR cine images, without the need to manually annotate the ventricular wall. Our framework takes 
advantage of a low-dimensional representation of the high-dimensional LV geometry based on principal 
component analysis. We analyze how the inference of myocardial passive stiffness is affected by using our 
automatically generated LV geometries instead of manually generated ones. These insights will inform the 
development of statistical emulators of LV dynamics to avoid computationally expensive biomechanical simu-
lations. Our proposed framework enables accurate LV geometry reconstruction, outperforming previous ap-
proaches by delivering a reconstruction error 50% lower than reported in the literature. We further demonstrate 
that for a nonlinear cardiac mechanics model, using our reconstructed LV geometries instead of manually 
extracted ones only moderately affects the inference of passive myocardial stiffness described by an anisotropic 
hyperelastic constitutive law. The developed methodological framework has the potential to make an important 
step towards personalized medicine by eliminating the need for time consuming and costly manual operations. In 
addition, our method automatically maps the CMR scan into a low-dimensional representation of the LV ge-
ometry, which constitutes an important stepping stone towards the development of an LV geometry- 
heterogeneous emulator.   

1. Background 

Computational studies of left ventricular (LV) mechanics, when in-
tegrated with cardiac magnetic resonance (CMR) imaging, can lead to a 
better understanding of LV dysfunction [1,2,3]. For instance, 

biomechanical parameters that describe LV function provide new in-
sights into the heart's pump function, related e.g. to myocardial stiffness 
or contractility [4,5]. Biomechanical studies of LV mechanics typically 
rely on a discrete representation of the LV geometry [6,3,7]. This dis-
cretized LV geometry is necessary as the cardiac mechanic equations 
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admit no closed-form solution and have to be solved numerically, i.e. 
using the finite element method [8]. Moreover, such a geometry itself 
has direct clinical applications as it can be used to derive various cardio- 
physiological quantities of interest (e.g. the LV cavity volume and local 
wall thickness), and provide a realistic 3D shape visualization to clini-
cians. Hence, obtaining an accurate ventricular geometry is an impor-
tant diagnostic task, especially for personalized health care [9]. 

Despite the significance of LV geometry reconstruction in clinical 
applications, so far the literature on how to make this process fast, 
reliable or automatic has been limited. In general, a typical procedure of 
LV geometry reconstruction from in vivo CMR data involves the 
following four steps: 1) segmentation (either manual or automatic) of 
the LV wall in selected CMR images of a given subject; 2) stacking 
segmented LV wall boundaries in a selected 3D coordinate system with 
necessary motion correction [10]; 3) 3D LV geometry reconstruction 
either through surface fitting or direct 3D shape generation; 4) genera-
tion of a discrete representation of the LV geometry, such as a finite 
element mesh. As well as requiring specialist knowledge, this procedure 
is time consuming and prone to human error, which prohibits its wide 
adoption in the clinic. More recent methods for cardiac geometry 
reconstruction include manual iterative interventions for reconstruction 
[11], and warping an idealized ventricular geometry, e.g. an ellipsoid, 
into patient data [12]. These methods, however, require a separate 
(manual) segmentation step. In addition, there have been few studies 
examining the impact on simulations of LV biomechanics when using 
geometries reconstructed with such techniques in place of manually 
reconstructed geometries. In particular, reconstructions based on para-
metric LV geometry representations, like ellipsoids, are likely to result in 
a systematic bias, which could have potentially severe consequences for 
subsequent biomechanical analysis. 

These difficulties can potentially be addressed with modern machine 
learning, which has been successfully applied to challenging problems 
across numerous domains, and its application in medical contexts has 
the potential to lead to long-lasting advances in healthcare [13]. Image 
segmentation tasks have attracted particular attention in the medical 
domain [13,14,15,16,17]. More generally, convolutional neural net-
works (CNNs) have proven valuable in various tasks related to cardiac 
image analysis, such as automated segmentation of CMR scans [14], 
survival prediction based on sequences of CMR scans [9], or 3D bi- 
ventricular segmentation from CMR images [18]. Still, comparatively 
few studies have aimed to learn the ventricular geometry from cardiac 
images. In the study of Bello et al. [9], for example, the ventricular 
geometries were not learned directly from CMR images but obtained via 
a non-rigid registration approach by mapping each patient's data onto a 
template geometry. 

The current paper differs from previous approaches as we go directly 
from CMR images to the LV geometry by learning its low-dimensional 
representation. The same idea was initially proposed in [19] where 
the authors developed a one-stage approach with a single CNN predicting 
the LV geometry from CMR images. In this study we build on this 
approach by substantially extending the underlying CNN methodolog-
ical framework. In particular, we propose a two-stage method, desig-
nating CMR image segmentation and geometry reconstruction to two 
specialist networks, separately. 

The main obstacle for the translation and impact of state-of-the-art 
cardiac mechanic models in the clinical setting is the need for patient- 
specific model calibration and parameter estimation [4]. Traditionally, 
this is performed using an iterative optimization procedure where a 
separate numerical solution of the underlying cardiac mechanics equa-
tions, obtained using the finite element method, is required at each step 
of the procedure. The computational costs associated with such an 
approach make them ill suited to the task of real-time decision support 
[3]. There is currently substantial interest in reducing these computa-
tional costs by building a statistical surrogate model or emulator, which 
would dispense with the need for any finite element simulations. 
However, an emulator requires a low-dimensional representation of a 

patient's LV geometry as a functional input, and its manual reconstruc-
tion is itself a slow process. For this reason, a method that enables the 
automatic extraction of such a low-dimensional representation in a fully 
automated way, directly from CMR images, could pave the way for 
paradigm-shifting real-time cardiac clinical decision support. 

Our main contribution in the present paper is the development of a 
methodological framework for a fully automated pipeline that provides 
an automatic extraction of the LV geometry directly from CMR scans. 
Specifically, we train a convolutional neural network (CNN) to predict 
the LV geometry by learning its principal component representation 
directly from CMR scans via automatic pixel labelling. This approach 
delivers two outputs simultaneously: an LV wall segmentation and a 
low-dimensional representation of the LV geometry. The motivation for 
this automatic LV geometry generation is a fully automated procedure 
for estimation of passive myocardial stiffness. To this end, we investigate 
the consequences that the automatic generation of LV geometries has on 
the estimation of passive myocardial stiffness and compare the results 
with those obtained when using manually generated geometries, as in 
[20]. Fig. 1 presents an overview of the proposed framework. 

2. Materials and methods 

2.1. Data 

In this section we first describe the protocols used to collect the data, 
including in vivo CMR imaging protocols for both healthy volunteers 
and patients with acute myocardial infarction. Next, we discuss how the 
original CMR scans are used to prepare the data for our analysis, con-
sisting of annotated images, LV geometries and corresponding compu-
tational finite element meshes. Finally, we summarize the ground-truth 
(GT) data used in this study. 

2.1.1. Study population and in vivo imaging 
The study population consists of 182 subjects; 64 healthy volunteers 

(HVs) and 118 myocardial infarction (MI) patients. The study was 
approved by the National Research Ethics Service, and all participants 
provided written informed consent. All methods, including CMR imag-
ing, were performed in accordance with the relevant guidelines and 
regulations. 

Healthy volunteers with no prior history of cardiovascular disease 
were enrolled for CMR imaging. A 12‑lead electrocardiogram was ob-
tained in all subjects and a normal ECG was an eligibility requirement. 
Other exclusion criteria included standard contraindications to mag-
netic resonance such as metallic implants or metallic foreign body. The 
demographics of all the healthy volunteers can be found in [21]. The MI 
patients were selected from a larger population of patients with acute 
ST-elevation MI (STEMI), obtained within a prospective, observational 
cohort MR-MI study carried out between 14 July 2011 and 22 November 
2012, funded by the British Heart Foundation (ClinicalTrials.gov iden-
tifier: NCT02072850). Three hundred and forty three patients with 
acute STEMI were eligible for enrolment in this MR-MI study if they 
showed signs that they required percutaneous coronary intervention 
(PCI) due to a history of symptoms consistent with acute MI. Exclusion 
criteria represented standard contraindications to MR, such as a pace-
maker and estimated glomerular filtration rate less than 30 ml/min/ 
1.73m2. The CMR study of MI patients involved CMR scans at 2.2 ± 1.9 
days (the acute state) and 6 months post-MI. Acute STEMI management 
followed contemporary guidelines. In this study, only the CMR scans at 
acute state were chosen. 

The CMR imaging protocol involved steady-state free precession cine 
imaging, which was used for LV structure and functional assessment, the 
short-axis cine stack of the left ventricle from the base to the apex was 
acquired with 7 mm thick slices and a 3 mm inter slice gap. Typical 
imaging parameters were: matrix = 180 × 256, flip angle = 80◦, TR =
3.3 ms, TE = 1.2 ms, bandwidth = 930 Hz/pixel, and voxel size = 1.3 ×
1.3 × 7 mm3. Standard cine images were also acquired in the LV inflow 
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and outflow tracts (LVOT), the horizontal long-axis (HLA), and the 
vertical long-axis (VLA) planes. In the STEMI group, typical imaging 
parameters were: matrix = 192 × 256, flip angle = 25◦, TE = 3.36 ms, 
bandwidth = 130 Hz/pixel, echo spacing = 8.7 ms and trigger pulse = 2. 
The voxel size was 1.8 × 1.3 × 8 mm3. The CMR methods and analyses 
have been previously described in detail in [22]. 

2.1.2. Non-automated (state-of-the-art) ventricular geometry 
reconstruction 

Below, we describe a non-automated method for ventricular geom-
etry reconstruction, which represents the current state-of-the-art and 
serves as a benchmark for the automated procedures proposed in the 
present study. As in the previous study in [4], six short-axis (SA) and 
three long-axis (LA) cine images were chosen for each subject in order to 
construct the 3D LV model at early-diastole (when the LV pressure is at 
its lowest), which is used for further biomechanical analysis. The LV wall 
boundaries were manually segmented at each imaging plane using in- 
house Matlab code, and the short-axis LV wall boundaries were 
further aligned to the boundaries in the corresponding HLA, LVOT, VLA 
images. Details of this manual procedure can be found in [4]. Using 
these manual segmentations, we obtained the ground-truth SA and LA 
segmentation data by labelling the pixels in the CMR image according to 
their locations relative to the manually segmented boundaries: 2 for the 
LV cavity, 1 for the myocardium and 0 for the background. 

A prolate spherical coordinate system is used to reconstruct the LV 
geometry after the manual segmentation and alignment, as in [23,20]. 
In detail, for a point with Cartesian coordinates (x, y, z), the corre-
sponding spheroidal coordinates (u, v, w) are: 
⎧
⎨

⎩

x = αsinh(w)cos(u)cos(v),
y = αsinh(w)cos(u)sin(v),
z = αcosh(w)sin(u),

(1)  

in which α is a scaling factor, u ∈ [ − π/2, π/2), v ∈ [0, 2π), and w ∈ (0, +
∞). After aligning the most-basal plane to the z = 0 plane, we have u =
0 at the basal plane and u = − π/2 at the apex. By assuming w to be a 
cubic B-spline interpolation of u and v, we can fit the endocardial and 
epicardial surfaces separately using the segmented boundaries from the 
6 SA and 3 LA cine images. For details of this surface fitting procedure, 
the reader is directed to [23]. The LV geometry is the region enclosed by 
the fitted endocardial and epicardial surfaces, each of which is repre-
sented by 2865 quadrilateral patches. In total, 5792 vertices are used for 

representing one LV geometry. In the Cartesian coordinate system, each 
vertex has three components, thus the LV geometry lies in a 17,376 
dimensional space (denoted “17k”). 

2.1.3. Data for inference in biomechanical models 

2.1.3.1. Biomechanical meshes. A 3D biomechanical cardiac model re-
quires a volumetric finite element discretization of the LV geometry [3]. 
To generate it, we first divide the wall thickness between the endocar-
dial and epicardial surfaces into 10 equal divisions, which means for the 
ith division across the wall, we have: 

wi = wendo + i⋅
wepi − wendo

10
, (i = 0, ..., 10)

In the same way, equal divisions along the circumferential and lon-
gitudinal directions are generated. Finally, a layered hexahedral mesh 
that is suitable for finite element simulations of LV dynamics is gener-
ated. The left panel in Fig. 2 presents segmented LV boundaries from an 
example in vivo CMR cine image and the right panel shows the corre-
sponding computational finite element mesh. 

2.1.3.2. CMR-derived volumes and strains. In order to infer myocardial 

Fig. 1. An overview of the proposed framework: learning 3D LV geometries automatically from CMR images based on a convolutional neural network (CNN). 
Important applications of the outputted LV geometries are statistical emulators (thanks to the CNN-predicted low dimensional representation of the LV geometry) and 
parameter inference in cardiac mechanics models. 

Fig. 2. LV geometry reconstruction from a CMR scan of a healthy volunteer. 
Left: segmented ventricular boundaries (blue: epicardium, red: endocardium) 
superimposed on a long-axis CMR image; right: an example of the reconstructed 
LV geometry discretized with hexahedron elements. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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passive stiffness from in vivo CMR scans, we measured end-diastolic LV 
cavity volume and 24 segmental circumferential strains directly from 
CMR cine images, using procedures similar to [24,4]. The segments are 
defined in four short-axial images as specified by the American Heart 
Association [25]. 

2.2. Methodology overview 

Our primary aim is to develop an automatic method based on con-
volutional neural networks (CNNs) that reads in CMR cine images and 
predicts the 3D LV geometry, represented by a cloud of points. This 
cloud of points can then be used to generate the LV mesh for subsequent 
cardiac biomechanical modelling. Our approach is based on two cor-
nerstones: using principal component analysis (PCA) for dimensionality 
reduction of high-dimensional LV geometries and separating the ge-
ometry reconstruction task from CMR image segmentation in a two- 
stage framework. 

Learning a high-dimensional, high-resolution, representation of the 
LV geometry directly from CMR cine images is a challenging problem, 
owing to the high-dimensional nature of both the input and the output 
domains, which increases the risk of serious overfitting during CNN 
training. Cutting-edge (deep) machine learning methods are “data 
hungry” and require dataset sizes much larger than typically available in 
cardiac studies (see e.g. [16] and the discussion in [26]). For datasets of 
realistic size, rigorous regularization is needed to prevent overfitting. As 
we have shown in [27], this loses the non-linear model flexibility that 
makes (deep) neural networks so powerful in the first place and reduces 
their predictive performance to that of simple linear predictors. 

To address these difficulties, our first cornerstone is to carry out PCA 
on a large population of LV geometries for dimension reduction, and to 
map all LV geometries into a low-dimensional space spanned by a few 
leading principal components. This substantially reduces the output 
dimension from the order of 17,000 to no more than 10 (the number of 
leading principal components). This pre-processing procedure, which is 
hard-coded into our CNN, means that weights on the connections 
feeding into the output layer of the CNN have been pre-trained and are 
kept fixed, substantially reducing the network complexity. These fixed, 
non-adaptable, weights on the edges between the inner bottleneck layer 
and the output layer of the CNN constitute the PCA basis, where the 
weights represent the projection into the PCA domain and the number of 
nodes in the bottleneck layer corresponds to the number of principal 
components. The effect of this procedure is a novel trade-off between 
reducing excessive model flexibility that could otherwise cause serious 
overfitting (by constraining the output weights based on PCA) while 
keeping enough adaptable degrees of freedom to maintain non-linear 
model flexibility (all the other weights of the network). 

The second cornerstone of our procedure is separating the segmen-
tation and geometry reconstruction tasks. To this end we train two 
CNNs: a segmentation network (Section 2.4) and a geometry prediction 
network (Section 2.3). The segmentation network is based on the CNN 
developed in [14] for segmenting CMR cine images, i.e. assigning 
distinct labels to pixels (LV wall, LV cavity, and background). Next, the 
predictions from the segmentation network are used by the geometry 
prediction network to predict the 3D LV geometry. Below we first 
describe the latter network as it directly relates to our final object of 
interest, i.e. the predicted LV geometry. Next, we describe the former 
network, which provides inputs to the geometry prediction network. 
Each network is trained independently in a supervised manner on 
population-wide data and both networks contribute valuable comple-
mentary information. The advantage of our two-stage approach is that 
we do not need to reconstruct the high-dimensional LV geometries (i.e. 
17k components in this study) directly from noisy images because this 
task is divided between specialist networks. In the Results section 
(Section 3.3) we show that the proposed two-stage approach achieves a 
considerable reduction of the LV geometry reconstruction error 
compared with an approach based on a single-task CNN predicting LV 

geometries from CMR scans, such as the one in [19]. Fig. 3 presents the 
overview of the proposed approach. 

As mentioned previously, our framework delivers two extra outputs 
on top of the LV geometry. Firstly, we obtain a low-dimensional repre-
sentation of the high-dimensional LV geometry, which is important in 
the context of developing statistical emulators. Secondly, for the given 
dataset, we deliver an automatic segmentation of the LV wall in cine 
images, in particular in LA cine images, which has not been considered 
in [14]. 

2.3. LV geometry prediction network 

2.3.1. Preparation: PCA and baselines 
Our dataset of LV geometries consists of 182 observations with each 

3D LV geometry represented by a 17k-dimensional vector. As discussed 
above, learning to predict such a high-dimensional vector as a direct 
function of the CMR image from a relatively small training set size is an 
ill-posed problem, leading to serious identifiability and overfitting 
problems. To address this difficulty, we follow [19] and learn a low- 
dimensional representation of the LV geometries using PCA, which 
substantially reduces the complexity of the LV geometry reconstruction 
problem. This approach also provides us with a low-dimensional LV 
geometry encoding, which is paramount for the development of statis-
tical emulators. For evaluation of the reconstruction accuracy we 
consider two baselines: the results reported in [19] and the predictions 
obtained using the mean LV geometry. This mean geometry is the LV 
geometry obtained by taking the mean of coordinates along each of the 
three dimensions over our LV geometry dataset. More formally, denote 
the jth GT LV geometry from our dataset, G *(j) =

{
x*

i
}M

i=1, j=1,…, J, with 
J=182, where M is the total number of vertices describing the LV ge-

ometry, in our case M=5792, and x*
i =

(
x*

i,1, x*
i,2, x*

i,3

)
is a vector of 3D 

Cartesian coordinates of the ith vertex. Then the mean geometry is given 
as 

G =
1
J
∑J

j=1
G

*(j)
. (2)  

2.3.2. Network architecture 
The previous work dealing with predicting LV geometries directly 

from CMR scans [19] considered a CNN consisting of seven layers (five 
convolutional and two fully connected), taking CMR images (SA and LA 
views together) as inputs and outputting a four principal component 
encoding of the LV geometry. Our proposed network architecture (see 
Fig. 4) differs from that of [19] in a number of aspects. The most 
important and fundamental difference is the splitting of the network into 
two branches, one each for the aligned SA and LA images, separately. 
The reason for this split is the inherent difference between LA and SA 
views. Dividing their processing into two separate CNN branches is 
therefore a natural “divide-and-conquer” strategy that allows each 
branch of the CNN to focus on the particular features of their respective 
views. 

To combine the predictions from both branches we further allow 
each sub-network to output eight PCA coefficients, which we then add 
via element-wise addition. We have chosen eight PCA components using 
cross-validation, discussed later in Section 2.3.5. The added PCA coef-
ficient layer is then followed by an eight-unit linear output layer. Our 
prior experimentation revealed that this approach performs better (in 
terms of the reconstruction error defined below and convergence speed) 
than an alternative network with an extra layer.2 In the convolutional 
layers we use leaky ReLU (x = max (0.2x, x)) activations. 

2 This additional layer was used for merging the representations from the two 
branches, each outputting 10 values, followed by a layer of 100 ReLU units and 
the final linear layer of eight PCA coefficients. 
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2.3.3. Inputs and aligning LA images 
A significant difference between our geometry prediction network 

and that in [19] is that we do not use the original CMR images as inputs 
but the corresponding segmented labelled images. The labelled image is 
encoded using 3 values: 2 for the LV cavity, 1 for the myocardium, 0 for 
the background; see the inputs in Fig. 4. We then scale the input to the 
[0,1] range. In addition, we align the LA images so that the long-axis 
orientation is horizontal. The long-axis is defined as the axis perpen-
dicular to the most basal plane and passing the gravity centre of the LV 
cavity at that plane (see the lower branch of the CNN in Fig. 4). We find 
that this LA alignment enables a better convergence and more accurate 
LV geometry reconstruction. 

2.3.4. LV geometry alignment – alternative GT targets 
The LV geometries in our original dataset discussed in Section 2.3.3 

are aligned such that the gravity centres of the LV cavity in the most- 
basal SA plane coincide. We will now introduce two additional data-
sets, derived from the original basal-aligned dataset that will serve as 
alternative GT targets for the geometry prediction network (see also 
Fig. 7). The basic idea is to align the LV geometries in a way that will 
make it easier for the geometry prediction network (see Fig. 4) to learn 

the target LV geometries. In particular, we consider its two variants: 
ordinary Procrustes registration (OPR) and generalized Procrustes 
registration (GPR). 

OPR uses the operations of rotation, scaling and translation to best 
match a discretized shape X to another shape Y. This is expressed as 

min
β,Γ,γ

⃒
⃒
⃒
⃒Y − βXΓ − 1γT

⃒
⃒
⃒
⃒2 (3)  

where β and γ are the scaling and translation parameters, Γ is the 
rotation matrix and 1 is a vector of ones. X and Y are matrices of equal 
dimension, where each row gives the position vectors of each point in 
the discretized geometry. In addition, both matrices are assumed to have 
centroid zero. 

GPR expands on OPR to align a set of shapes X1, …, XN to a reference 
geometry X as closely as possible. This is done by iteratively minimizing 

∑N

i=1

⃒
⃒
⃒

⃒
⃒
⃒X − βiXiΓi − 1γT

i

⃒
⃒
⃒

⃒
⃒
⃒

2
(4)  

with respect to the transformation parameters 
{
(βi, γi,Γi)

N
i=1

}
, where at 

each iteration the reference shape X is the mean of the transformed 

Fig. 3. Two-stage framework overview. Given the CMR images, pixel segmentation is predicted using the segmentation network. Next, the geometry prediction 
network predicts the 3D LV geometries, given the segmentations. 

Fig. 4. Geometry prediction network: CNN consisting of two identical branches, one for six short-axis (SA) images and one for three long-axis (LA) images. Each 
branch consists of five convolutional layers (Conv. 1–5) and a fully connected layer with leaky ReLU activations outputting eight PCA coefficients, which are then 
added together using the element-wise addition operator. Inputs: LV segmentations encoded 2 for the cavity, 1 for the myocardium and 0 for the background. Output: 
a left ventricular geometry represented by approx. 17 thousand values (17k). 
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shapes from the previous iteration. Again, the shapes are assumed to have 
centroid zero. This procedure is then iterated until convergence. 

Our first alternative dataset alignment – the result of which we call 
“centered-GT” – is based on GPR where only translations of the LV ge-
ometries are considered. Under the standard Euclidean metric, the 
optimal translation corresponds to simply aligning each LV geometry to 
have a common centroid, which we set to the origin. The second alter-
native alignment is constructed using GPR where only translation and 
rotation operations are used, which we refer to as “rotated-GT”. We do 
not unify the scaling of the LV geometries because we want to predict the 
size of each LV geometry explicitly. Note that the rotations applied to the 
LV geometries by GPR are small as all the LV geometries in the original 
dataset share a common orientation. Any further rotation is to account 
for intrinsic shape variation in each specific LV geometry. 

2.3.5. Training 
First, we train the geometry prediction network using the GT seg-

mentations as inputs, which we have described in Subsection 2.1.2. 
Later on, in Section 3.3, we will discuss the results of the two-stage 
framework in which the geometry prediction network is trained using 
the segmentations predicted by the segmentation network discussed in 
Section 2.4. 

In the training we minimize the LV geometry reconstruction error 
taken as the mean squared error (MSE) between the GT LV geometry and 
its reconstructions. See Section 6.1 in [28] for a justification of the MSE 
as an objective function. Formally, using the notation introduced in 
Section 2.3.1, let G *(j) denote the jth GT LV geometry from our dataset, 
j=1,…, J. Furthermore, denote the corresponding predicted geometry 

G
(j) =

{
x(j)

i

}M

i=1
. We then calculate the MSE between G *(j) and G (j) as: 

MSE(j) := MSE
(
G

*(j)
,G

(j) )
=

1
3M

∑M

i=1

∑3

k=1

(
x*(j)

i,k − x(j)i,k

)2
. (5) 

Finally, we consider the average MSE over the whole dateset of J LV 
geometries calculated as: 

MSE =
1
J
∑J

j=1
MSE(j). (6) 

We use the average MSE (Eq. (6)) to train the geometry prediction 
network and to assess the reconstruction accuracy for the different 
datasets (see Fig. 7 for more details). 

To prevent overfitting we use 14 fold cross-validation, i.e. we divide 
our dataset of 182 subjects into 14 folds, with 13 subjects each, with all 
182 subjects (HV and MI) randomly shuffled. We then train the network 
on 12 folds and use one of the remaining two folds for cross-validation 
(to be discussed below) and the other one for testing. Importantly, 
PCA is performed only on the training data, without the test or valida-
tion data. We then set the number of PCA components to the number 
that minimizes the cross-validation error (leading to an optimal number 
of 8 components). 

As the CMR images usually have different pixel spacing, we first 
unify them by applying a common pixel spacing so that all CMR images 
and corresponding labelled images are expressed in the same resolution. 
We then crop 64 × 64 pixel patches from the unified labelled images so 
that the LV cavity centre is in the centre of the crop. We then take 60 ×
60 random crops from the 64 × 64 image patches for training, and the 
central crop of the same size for validation and testing. Taking random 
crops for training corresponds to a crop noise of [±2 × ± 2] pixels. 
Random cropping is a standard data augmentation technique in com-
puter vision, aimed at preventing overfitting, see [29] for details. 

The CNN training makes use of two regularization parameters (often 
referred to as “hyperparameters” in the deep learning literature): the 
learning rate and the L2 regularization strength. In addition to con-
trolling the convergence rate, the learning rate also provides regulari-
zation given a fixed number of training epochs via early stopping. The L2 

regularization strength prevents overfitting by keeping the weights of 
the CNN low. This is done by adding the squared L2 norm of the total 
weight vector, multiplied by the L2 regularization strength, to the 
standard MSE loss function. In some layers (see Fig. 4 for details) we also 
apply another regularization technique called dropout [30]. Dropout 
involves randomly switching a subset of the networks weights to zero at 
a given rate. 

The values of the CNN regularization parameters and the dropout 
rate are the same for each cross-validation fold, with the L2 regulari-
zation parameter set equal to 0.001, the learning rate to 0.0004 and the 
dropout rate to 0.01. We select these values manually, based on the 
cross-validated CNN performance after 300 epochs (following [19]). We 
implement the geometry prediction network using Python and Tensor-
Flow. Training of a single network takes about 2 min on a NVIDIA 
Quadro P4000 GPU for each cross-validation partition. 

2.4. Segmentation network 

To implement our segmentation network, we use the freely-available 
network architecture from [14], which we display in Fig. 5. This ar-
chitecture is similar to the U-net architecture from [31] but without 
intermediate up-convolutional layers. 

2.4.1. Training 
We need to train the network from [14] on our own dataset, indi-

vidually for SA and LA images, since the network originally trained in 
[14] does not segment the LV wall in LA images. Moreover, we also 
found it did not work properly for the SA images from our dataset.3 The 
general approach to training our segmentation network is similar to the 
one outlined for our geometry prediction network in Section 2.3.5. 
There are, however, some changes to the training procedure that we will 
now outline in more detail. Firstly, we resize the CMR images as the 
inputs to the network with a size of 160 × 160 pixels. As in [14] we use 
the mean cross entropy as the loss function for training; see Section 6.9 
of [28] for a discussion of why this is the optimal loss function for 
discrete response variables. The cross entropy is computed between the 
GT annotations and the probabilistic label predicted by the network, 
training the network for 2000 iterations, using a batch size of four. The 
latter is due to the memory limit available on our GPU as the network 
uses approximately 1GB of GPU memory per image. Similar to the ge-
ometry prediction network, we perform 14-fold cross-validation. This 
means that each training split uses 12 folds with 13 subjects each, with 
each subject consisting of 6 SA and 3 LA images, resulting in 936 SA 
images (12 × 13 × 6) and 468 LA images (12 × 13 × 3) for training. We 
explore various data augmentation techniques when training the seg-
mentation network, such as the addition of noise to the image scale, as 
well as image rotations and shifts, but none yields performance 
improvements. 

2.4.2. Evaluation 
For the segmentation task we use the Dice score, separately for the 

LV wall and the LV cavity, as the evaluation measure. The Dice score is 
defined as 2∣P ∩ G ∣ /( ∣ P ∣ + ∣ G ∣ ), where P and G are the predicted and 
ground-truth pixel sets, respectively. The Dice metric is also used in 
[14]. It is similar to another popular criterion called intersection over 
union (IoU), defined as ∣P ∩ G ∣ / ∣ P ∪ G∣. However, Dice focuses more on 
the average prediction rather than on the worst-case prediction, as IoU 
does. 

3 It often worked reasonably well for the basal and mid-ventricle SA images of 
healthy volunteers, but not for SA images close to the apex, and it performed 
poorly for MI patients. 
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2.5. Passive myocardial stiffness inference using biomechanical models 

Having outlined the automatic LV geometry generation, we will now 
discuss how this can be combined with a biomechanical model of the left 
ventricle to approximate the behaviour of the left ventricle in diastole 
and how we plan to assess the accuracy of the LV geometry represen-
tation in this context. 

The biomechanical model, which is visualized in Fig. 6, can simulate 
the diastolic filling process from early to end of diastole. Important for 
such a model is the strain energy function, describing the build up of 
energy in the tissue as it is deformed. In our forward model this is 
provided by the Holzapfel-Ogden (HO) law [32], a detailed discussion of 
which can be found in the literature [32]. For the work presented here, it 
is only important to know that this function contains eight constitutive 
parameters a, b, af, bf, as, bs, afs, bfs that, when accurately inferred, allow 
us to describe the passive properties of the cardiac tissue. 

The parameters of the HO law cannot be measured in vivo and must 
be inferred non-invasively from indirect measurements, which typically 
involves some expensive iterative optimization procedure. This idea was 
used in a specific multi-step procedure for inferring myocardial prop-
erties using the HO law in [24]. Since that inferring HO law parameters 
has been considered in a series of subsequent studies [4,33,34]. 

This method involves matching the model-predicted LV volume (V) 
and 24 circumferential strains ε*

i , i = 1, …, 24, to the measured ones, 
extracted from in vivo CMR scans (see Section 2.1.3). Denoting the 

volume and strains by V* andε*
i , i = 1,…,24, considered the following 

loss function [24]: 

loss =
∑

i=1,…,24

(
εi − ε*

i

)2
+
(V − V*)

2

V* , (7)  

which can be optimized to find a set of best fitting parameters. Details on 
the forward biomechanical LV model and CMR derived strains and 
volumes can be found in [24]. The LV model is simulated for diastolic 
filling with a population-based end-diastolic pressure, taken to be 8 
mmHg. This will allow us to infer myocardial passive properties as in 
[24]. 

The eight parameters of the HO law are challenging to infer because 
they are highly correlated and weakly identifiable, see [24]. Therefore, 
we follow the approach proposed in [33] and reparametrize the original 
eight-dimensional inference problem [5] using a four-dimensional vec-
tor θ as follows 

a = θ1a0, b = θ1b0, af = θ2af0, as = θ2as0,

bf = θ3bf0, bs = θ3bs0, afs = θ4afs0, bfs = θ4bfs0,
(8)  

where the nought subscripts indicate the reference values, which can be 
taken from published studies [8,5]. Details on the reparameterization 
can be found in [33,5]. 

Fig. 5. Segmentation Network (adapted from [14]): the network learns image features from fine to coarse scales through a series of convolutions (Conv. 1–16), then 
upsamples (with transposed convolutions, transp.), and concatenates (concat.) multi-scale features, to finally predict the pixel-wise image segmentation (one of the 
three label classes: background, myocardium, cavity). The illustrated example image is of the LA view of the LV (not considered in [14]), and the SA view is processed 
in the same manner. 

Fig. 6. Schematic illustration of simulating LV dy-
namics in diastole. Left: inputs to the model, right: 
outputs from the model. Given a representation of the 
left ventricle in the form of a finite element mesh at a 
given reference time point t1 of the pump cycle, blood 
pressure as a boundary condition and the constitutive 
parameters of the cardiac mechanic model, the shape 
of the left ventricle at a later time point t2 can be 
predicted. In our study, t1 is early diastole, and t2 is 
end diastole. The LV geometry at early diastole, t1, 
has to be extracted from CMR scans (indicated by the 
arrow on the very left), and automating this process 
is the main purpose of our work. We assess the per-
formance of our method not only in terms of the LV 
geometry reconstruction itself, but also in terms of 
the impact that a perturbation of the LV geometry has 
on cardio-mechanic processes. To infer the cardio- 
mechanic parameters, we compare the LV geometry 
at t2, as predicted by the cadio-mechanic model, with 
the LV geometry extracted from a CMR scan at the 
same time point (end diastole), quantify the 
mismatch, and use Bayesian optimization to find the 
cardio-mechanic parameters that minimize the cor-

responding objective function. To allow for multi-modality of the objective function and potential weak identifiability of some of the parameters, we use the cardio- 
mechanic parameters thus inferred to compute stretch-stress curves along different directions in the myocardium, and then assess the accuracy of our method in 
stretch-stress curve space.   
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2.5.1. Bayesian optimization 
A disadvantage of the approach in [24] is its high computational 

complexity and the fact that it is not guaranteed to converge to the 
global minimum of the objective function (Eq. (7)). To circumvent these 
problems we use Bayesian optimization (BO), which is a global opti-
mization method based on sequential training of a statistical approxi-
mation to the unknown target function. BO is particularly suited for 
problems in which a single evaluation of the objective function is time 
consuming. We refer to [35] for a review of the BO methodology. 

As in [36], we consider two versions of BO, based on “target surro-
gates” and “partial error surrogates”. In the former approach the 
objective function (Eq. (7)) is approximated as a whole using a single 
Gaussian process (GP) regression, while in the latter approach each error 
term in Eq. (7) is approximated separately, using a separate GP regres-
sion. We refer to [37] for a detailed treatment of GP methods. Note that 
in this paper, our interest is not in comparing different variants of BO, 
but to verify how robust parameter inference is by considering two in-
dependent runs of BO for basic uncertainty quantification. 

We initialize BO using an initial design based on the Latin hypercube, 
following the standard recommendation [38] to use 10 × D points, 
where D is the dimensionality of the problem (in our case the number of 
parameters to be inferred). 

2.5.2. Evaluation methods 
We are interested in comparing the parameter inference performance 

when using the LV geometries obtained automatically from our pro-
posed CNN-approach with the results obtained using the manually 
segmented geometries (see Sections 2.1.2) and the baseline of the mean 
geometry (defined in Eq. (2)). To make this comparison, we make use of 
three separate evaluation methods, which we outline below. 

BO is designed to optimize a given objective function, thus the best 
objective function value obtained by the BO optimisation routine will 
serve as our first evaluation method. Here we are interested in the 
minimum of the mismatch function (Eq. (7)) so we prefer approaches 
leading to lower loss values. A low value of the objective function in-
dicates that the underlying parameters have led to outputs (LV volume 
and circumferential strains) closely agreeing with the CMR-derived 
measurements described in Section 2.1.3 (real or synthetic). 

For synthetic data, generated with known GT parameters, we can 
assess the inference accuracy in the parameter space by calculating the 
weighted L2 distance between the GT and inferred values. In particular, 
we are interested in the relative root mean squared error (RMSE), 
calculated as 

rRMSE =

⎛

⎜
⎝

∑D

i=1

⎛

⎝θ̂ i − θ*
i

θ*
i

⎞

⎠

2
⎞

⎟
⎠

1/2

, (9)  

where θ*
i denotes the GT value of θi, θ̂ i is the estimate of θi and D is the 

dimensionality of the problem, in our case D=4. Scaling each error term 
by the corresponding GT value introduces some robustness against 
inflation by large parameter values. 

The problem with evaluating in the parameter space is that the pa-
rameters of the HO law are not guaranteed to be uniquely identifiable 
from the available experimental data, as discussed e.g. in [24]. 
Furthermore, the passive behaviour of the myocardium is highly 
nonlinear with respect to its stretch. For that reason, differences in the 
biomechanical parameter space may not be informative about the dif-
ference in myocardial stiffness and can even be misleading. On the 
contrary, the stretch-stress space derived from the HO law under a 
prescribed stretching mode (i.e. uniaxial) is directly related to myocar-
dial stiffness at different stretch levels, and is often employed in ex vivo 
stretching experiments [39] or material parameter inference studies 
[24,20]. To derive the stretch-stress space for a specified direction, we 
virtually stretch a myocardial strip uniaxially at one end while keeping 

the other end fixed. The corresponding stress in that strip is then 
calculated using the constitutive law by assuming homogeneous stretch 
occurring in the entire strip [39,24,32]. Note that stretching a 
myocardial strip is similar to stretching a nonlinear rubber band. In this 
way, two virtual myocardial strips are considered here. One strip is 
along the myofibre direction with stretch λf = l/L, where l and L are the 
current and reference lengths of the same myocardial strip, respectively. 
The other one is along the sheet direction with λs = l/L. The interested 
reader may refer to [40] for some examples of uniaxial stretch-stress 
derivation using a similar HO model. These stretch-stress curves allow 
us to gain insight into the underlying myocardial stiffness values, 
because in general, higher stress values for a given stretch level indicate 
higher stiffness. Therefore, as an additional evaluation metric we use 
stretch-stress curves along those two principal directions (myofibre and 
sheet directions) according to a layered myofibre structure 
approximation. 

3. Results 

In this section, we firstly present the individual results of the seg-
mentation and geometry prediction networks, where each network is 
applied separately. Then, we present the results of the two-stage 
approach for LV geometry reconstruction, where both networks are 
applied together in sequence. Finally, we quantify the utility of these 
reconstructed meshes for parameter inference in a bio-mechanical 
model of the LV. Fig. 7 illustrates the evaluation methods that will be 
used and the datasets of interest in each case. 

3.1. Geometry prediction network 

The geometry prediction network, which is visualized in Fig. 4, re-
quires segmented CMR scans as inputs. When the segmented scans are 
obtained automatically using the segmentation network, they will 
inevitably be subject to a degree of error, which in turn will affect the 
accuracy of the predicted geometry. For this reason, we first present the 
results of the geometry prediction network where the manually ob-
tained, GT segmentations are provided as input. These results provide a 
lower bound on the error that can be achieved using our fully auto-
mated, two-stage approach. In addition, this step allows us to determine 
the optimal number of PCA coefficients to use in the output layer of the 
segmentation network. Using more coefficients increases the flexibility 
of the model, allowing for more complex LV geometry features to be 
accounted for. However, using more coefficients also increases the risk 
of the network overfitting to the training data. We find that eight PCA 
cofficients optimially balances the trade-off between these consider-
ations. (Note that this differs from the four coefficients used in [19]). 
With eight coefficients, the geometry prediction network achieves an 
MSE of 0.03 when the GT segmentations are provided as inputs, which is 
40% less than the MSE of 0.049 reported in [19]. 

3.2. Segmentation network 

As discussed in Section 2.4, we retrain the network from [14] to 
segment SA and LA images separately. The segmentation results for the 
two image types respectively are discussed in turn below. The results are 
evaluated using the Dice score metric on both the wall and cavity of the 
left ventricle, as is illustrated in the top panel of Fig. 7. 

3.2.1. Short axis images 
Table 1 summarizes the SA segmentation results for the entire 

dataset. When training from scratch with randomly initialized weights, 
we obtain average Dice scores of 80.5% for the LV wall, and 90.9% for 
the cavity. When training with weights initialized using the pre-trained 
values from the network published in [14], improved Dice scores of 
85.0% and 92.5% respectively are obtained. These improved scores are 
comparable with the scores of 88% for wall and 94% for cavity found in 
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[14], which were based on a much larger dataset of approximately 5000 
subjects. Note that for each of the approaches displayed in Table 1, the 
Dice score of the cavity segmentation is higher than the LV wall seg-
mentation score. This is unsurprising, since the higher contrast of the 
cavity makes this easier to segment than the LV wall, which is sometimes 
indistinguishable from surrounding tissues. 

Fig. 8 displays a comparison of the GT segmentations of a HV with 
the predictions from the segmentation network. We see that the pre-
dictions of the network get less accurate near the apex of the left 
ventricle. However, it is worth noting that due to the lack of a clear 
boundary in the CMR scan, the manual segmentation also becomes more 
erroneous in this region. 

3.2.2. Long axis images 
We train the LA Segmentation Network using all three LA views 

together, again initializing with the pre-trained weights from [14]. 
Table 2 displays the mean Dice scores attained by the network, broken 
down for each of the LA views. We can see that in particular, LV wall 
segmentation scores are lower for the LA images when compared to the 
SA images. Fig. 9 displays a comparison between the GT and automat-
ically predicted LA segmentations for one of the subjects. The obtained 
mean Dice score is 86.60%, which is slightly lower than that for SA 
(88.75%). However, despite this slight deterioration, we can see that our 
segmentation network still delivers a reasonably accurate segmentation 
of LV wall in the long-axis view. 

3.3. The two-stage framework 

We now report the results obtained by our two-stage reconstruction 
framework, whereby the CMR images are first segmented using the 
segmentation network, before these segmentations are passed to the 
geometry reconstruction network, which predicts the LV geometry. The 
middle panel in Fig. 7 outlines how the reconstruction results are eval-
uated using MSE between the GT and predicted geometries, respectively. 
Note that we found the MSE scores to be very stable - running the CNN 
several times with different random number generator seeds varied the 
results usually only in the fourth digit. For this reason, we report the 
MSE scores up to the third digit. 

When trained on the automatically segmented SA and LA images 
from the segmentation network, the geometry prediction network re-
sults in an MSE of 0.033 relative to the GT geometries. This is only 10% 
higher than the lower bound of 0.03 described in Section 3.1, when the 
network is trained on the GT, manually segmented SA and LA images. As 
expected, the predictions of the network deteriorates when either only 
the SA or only the LA images are provided as input: for the SA-only 
network, the MSE loss is 0.038, while for the LA-only network, the 
MSE is 0.044. These results are summarized in the top half of Table 3. 

The bottom half of Table 3 summarizes the results of the two-stage 
approach where the LV geometries are aligned using the two Procrus-
tes techniques described in Section 2.3.4. The results show that carrying 
out these alignments results in further reconstruction improvements: for 
the centred dataset, the MSE decreases to 0.026, and there is a further 
slight gain for the rotated dataset, where the MSE is 0.025. Note how-
ever that by pre-aligning the LV geometries, the performance of the 
baseline mean-geometry prediction also improves: the MSE declines 
from 0.074 for the original data set to 0.058 and 0.057 for the centered 
and rotated datasets, respectively. The cause of this improvement is the 
fact that by aligning the datasets in this manner we reduce the variance 
between the individual geometries, and hence reduce the MSE of the 
mean-geometry prediction. 

Table 4 shows the results of the two-stage reconstruction approach 
on the test set for different number of PCA components. The results show 
that reconstruction performance is robust, even as we vary the number 

Fig. 7. An overview of the evaluation methods and 
datasets used for CMR image segmentation, geometry 
reconstruction and parameter inference, respectively. 
For parameter inference “×2” refers to repetitions of 
Bayesian optimization with two algorithms for basic 
uncertainty quantification. Dashed arrows indicate 
how the datasets are related. For assessing the accu-
racy of parameter inference, we used synthetic data. 
These were generated from simulations using the 
material parameters estimated from the real data. We 
represent this graphically in the figure with a dashed 
horizontal arrow, which indicates that the generation 
of the synthetic data has been informed by the real 
data.   

Table 1 
SA segmentation network results: Dice scores for different network initializa-
tions and those from [14] for comparison.  

Case LV Wall Cavity 

Random weights 80.5% 90.9% 
Weights from [14] 85.0% 92.5% 
Results from [14] 88.0% 94.0%  
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of components over a substantial range from 4 to 10. Note that in our 
main simulations, we have used eight components consistently, based on 
preliminary explorations described in Section 3.1. That is, we did not 
select the number of PCA components based on the test set results from 
Table 4, as doing so would introduce selection bias. 

Fig. 10 presents examples of automatically generated LV geometry 
reconstructions from our two-stage approach, against the corresponding 
GT geometries. The examples presented are typical cases, for which the 
reconstruction errors are approximately equal to the median recon-
struction error. The reconstructions are accurate, particularly with 
respect to the general size and height of the LV geometry, but some small 
misalignments occur near the edges. 

As an additional experiment, we calculate the cavity volumes of the 
LV geometries automatically generated by our two-stage method, and 
compare with the volumes of the GT geometries. As shown in Fig. 7, we 
perform this experiment only for the data set of rotated LV geometries, 
on which our automated method incurs the lowest reconstruction MSE. 
On this dataset, our method achieves an average RMSE of 12 ml in 
volume. This is lower than the RMSE of 26 ml obtained using the mean 
LV geometry baseline, and is comparable with values from the literature. 

For instance, the network developed in [41], which was trained using a 
volume-based objective on a larger dataset, achieved an RMSE of 10 ml. 

3.4. Parameter inference 

Having evaluated the LV geometry reconstruction in geometry space, 
we now investigate the effect this on the inferred mechanical properties 
as discussed in Section 2.5. We make use of four LV geometries corre-
sponding to randomly selected HVs, which we label HV A, HV B, HV C 
and HV D. We consider three ways to represent each LV geometry: the 
manually obtained original geometry (ground truth), the geometry 
reconstructed using the proposed CNN-based approach and the mean 
geometry specified in Eq. (2) (serving as the baseline). For each of the 
four subjects we have measured the end diastolic volume V* and 24 
circumferential strains, ε*

i , i = 1,…,24, from CMR scans, using proced-
ures discussed in Section 2.1.3. 

We carry out two studies: a real data study and a synthetic data 
study, each evaluated using the corresponding methods discussed in 
Section 2.5.2 (see also the bottom panel in Fig. 7). In the real data study 
we use the measurements V* and ε*

i , i = 1,…,24, available for each HV. 
However, we do not know the underlying true parameters with which 
we could compare the estimated values, therefore we treat the estimates 
from the original LV geometries as gold standards. These gold standard 
parameter values are also used to generate synthetic data: for each LV 
geometry we run the forward simulator with the corresponding opti-
mized parameter values and treat the outputted measurements as syn-
thetic data on the LV volume and 24 circumferential strains. The 
knowledge of the GT parameters allows us to assess the effect that the 
geometry approximations (the proposed CNN-based reconstruction and 

Fig. 8. SA segmentation network results. Clockwise from top left: typical segmentation results as we move from the basal plane to the apex for one healthy volunteer. 
The red line shows the manual segmentation results while the shaded regions show the segmentation network prediction. As we move towards the apex, seg-
mentation becomes more difficult both for manual and automatic methods. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Table 2 
LA Segmentation network results: Dice scores for 3 different long-axis views.  

View LV Wall Cavity 

VLA 82.6% 93.4% 
HLA 81.7% 93.3% 
LVOT 76.3% 92.3% 
Mean 80.2% 93.0%  
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the mean geometry) have on the optimization directly in parameter 
space. 

3.4.1. Real data 

3.4.1.1. Objective function. Table 5 presents the final values of the loss 
objective function from Eq. (7) for the four LV geometries under 
consideration. In all cases except HV B the reconstructed meshes lead to 
lower errors than the mean mesh. Moreover, the results seem stable, 

Fig. 9. LA segmentation network results. Predictions for all three LA views for a single subject. Top left provides the HLA view, top right shows the VLA view and 
bottom is the LVOT view. HLA: horizontal long-axis, VLA: vertical long-axis, LVOT: LV inflow and outflow tracts 

Table 3 
The two-stage approach results: MSE (in mm2). The top part of the table re-
ports the results for the original dataset of LV geometries, and the bottom part 
presents the results for the two alternative alignments of the dataset of LV 
geometries described in Section 2.3.4. The lowest MSE value in bold.  

Model MSE (mm2) 

Dataset of original LV geometries 
Mean geometry  0.074 
CNN baseline from [19]  0.049 
GT-segmentation CNN lower bound  0.030 
Segmentation-based CNN (SA-only)  0.038 
Segmentation-based CNN (LA-only)  0.044 
Segmentation-based CNN  0.033  

Dataset of aligned LV geometries 
Mean geometry – centered-GT  0.058 
Mean geometry – rotated-GT  0.057 
Segmentation-based CNN (centered-GT)  0.026 
Segmentation-based CNN (rotated-GT)  0.025  

Table 4 
MSEs (in mm2) for the two-stage approach for different numbers of PCA com-
ponents. The first four components are the most important and were used in 
[19]. For the segmentation input we used eight components. The minimum is 
obtained for eight and seven components for the original and centered/rotated 
data, respectively.  

Number PCA 
components 

Original 
dataset 

Centered 
dataset 

Rotated 
dataset  

4  0.035  0.026  0.025  
5  0.035  0.027  0.025  
6  0.034  0.026  0.025  
7  0.034  0.025  0.024  
8  0.033  0.026  0.025  
9  0.033  0.026  0.025  
10  0.033  0.025  0.024  

Fig. 10. The two-stage approach example reconstructions. Depicted LV ge-
ometries are typical cases – reconstructions that obtained approximately the 
median reconstruction error. Blue shape: reconstruction, grey wireframe: GT. 
The reconstructions are accurate, LV sizes and heights are similar, there are 
small misalignments at the edges. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Bayesian optimization, real data study: the lowest values of the objective func-
tion for four healthy volunteers (HVs) obtained with the reconstructed geometry 
(geo.), the original geometry and the mean geometry. BO repeated with two 
algorithms (target surrogates, targ. and partial error surrogates, part.) for basic 
uncertainty quantification.  

Subject Reconstructed geo. Original geo. Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A  0.0448  0.0453  0.0396  0.0396  0.0938  0.0950 
HV B  0.0580  0.0600  0.0443  0.0442  0.0385  0.0382 
HV C  0.0797  0.0799  0.0655  0.0658  0.1118  0.1120 
HV D  0.0470  0.0470  0.0556  0.0548  0.0476  0.0476  
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with independent runs of BO, even with the two different surrogates 
described in Section 2.5.1, leading to almost identical values. 

3.4.1.2. Stretch-stress curves and parameter estimates. Figs. 11 and 12 
present the stretch-stress curves corresponding to the final θ values from 
the three geometries (reconstructed, original, mean) for each HV under 
consideration. To reiterate, the stretch-stress curve is an alternative way 
of depicting the nonlinear myocardial stiffness along a specific direction 
within a range of stretch levels. A larger stress under the same stretch 
level suggests a higher stiffness. Thus by comparing the relative posi-
tions of the stretch-stress curves, we can assess nonlinear myocardial 
stiffness within a range of stretch levels. For example, the closer the two 
curves, the closer the material stiffness, and vice versa. For all the HVs 
except HV C, the curves obtained for the CNN reconstructed geometries 
are closer to those for the original geometries than the curves obtained 
using the mean geometry. For HV C (Fig. 12), the parameters obtained 
with BO with partial error surrogates for the reconstructed and for the 
mean geometry lead to much stiffer effects for higher stretches than 
those found with other methods. Specifically, much higher stress values 
can be found when λf>1.15 or λs>1.25 when using the BO with partial 

error surrogate method for HV C, in other words, much higher 
myocardial stiffness inferred by that method. 

We report the final parameter estimates used to generate the stretch- 
stress curves in Table 6. These results are visualized by means of Bland- 
Altman plots comparing the differences between the original and 
reconstructed geometries with the differences between the original and 
mean geometries in Appendix A. Overall, taking the estimates obtained 
for the original geometries as benchmarks, we can conclude that the 
CNN reconstructed geometries lead to better estimates than those 
recorded for the mean geometry. 

Finally, we observe that θ4 is often hard to identify, even when using 
the original geometry. For instance for HV A and HV D the estimates of 
θ4 for the original geometry obtained with the two variants of BO vary 
noticeably. A similar behaviour can be noted for HV C, for both the CNN- 
reconstructed and mean geometry, or HV B for the mean geometry. 
Therefore, in our next study based on synthetic data we decide to fix the 
value of θ4=1 (i.e. no scaling of the reference values). 

Fig. 11. Bayesian optimization, real data study: stretch-stress curves for HV A and HV B (in rows). Blue: BO with target surrogates (targ.), red: BO with partial error 
surrogates (part.), solid lines: reconstructed geometries (recon. mesh), dashed lines: original geometries (org. mesh), dotted lines: mean geometries (mean mesh). λf 
= l/L is the uniaxial stretch along the myocyte direction, and λs = l/L is the uniaxial stretch along the sheet direction, in which l and L are the current and reference 
lengths of the myocardial strip. σf and σs are corresponding stress values. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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3.4.2. Synthetic data 

3.4.2.1. Objective function. Table 7 presents the final values of the loss 
objective function from Eq. (7) for the four HVs under consideration. 
Notice that, due to the absence of measurement errors in the synthetic 
data, the mismatch values are much lower than those found in Table 5. 
These values are particularly close to zero for the original geometries 
due to the absence of any geometry approximation. 

Similar to the real data study, the reconstructed geometries lead to 
lower losses than the mean geometry for all cases except HV B. In 
addition, the choice of surrogate has little effect on the parameter esti-
mates, which is also found in the real data case. 

3.4.2.2. Parameter estimates. Table 8 and Fig. 13 present the results in 
the parameter space using rRMSEs, as defined in Eq. (9). As expected, 
optimization based on the original geometry performs the best with very 
low rRMSEs. Moreover, parameter estimates obtained with the CNN 
reconstructed geometries are typically much more accurate than those 
obtained with the mean geometry, leading to lower rRMSE. For all HVs 
but HV C, the CNN reconstructed geometries clearly outperform the 
mean geometry for both BO variants and for HV B the reconstructed 

geometry, and lead to results very close to those based on the original 
geometry. For HV C, comparing the objective function values from 
Table 7 with the rRMSEs in Table 8 reveals that the optimization 
problem is difficult due to local optima and ridges in the objective 
function. We can see that even though independent BO runs converge to 
very close values of the objective function (e.g. 0.809 × 10− 2 and 0.800 
× 10− 2 for the reconstructed mesh) the corresponding parameters may 
result in very different rRMSEs (e.g. 0.6377 and 0.1362 for the recon-
structed mesh). This illustrates the point made in Section 2.5.2 that 
evaluation in the parameter space alone might not be sufficiently 
informative and needs to be complemented with the analysis of stretch- 
stress curves. 

3.4.2.3. Stretch-stress curves. Figs. 14 and 15 present the stretch-stress 
curves for the four HVs under consideration to assess the agreement 
between the inferred myocardial stiffness and the GT stiffness along the 
myocyte and sheet directions by virtually stretching a myocardial strip 
again. In all cases the curves based on the original geometries almost 
perfectly match the GT ones, suggesting the inferred myocardial stiffness 
agrees well with the GT stiffness at different stretch levels. Specifically, 
for HV A, the curves based on the reconstructed mesh and the curves 
based on the mean mesh are in close agreement with the GT curve for 

Fig. 12. Bayesian optimization, real data study: stretch-stress curves for HV C and HV D. Blue: BO with target surrogates (targ.), red: BO with partial error surrogates 
(part.), solid lines: reconstructed geometries (recon. mesh), dashed lines: original geometries (org. mesh), dotted lines: mean geometries (mean mesh). λf = l/L is the 
uniaxial stretch along the myocyte direction, and λs = l/L is the uniaxial stretch along the sheet direction, in which l and L are the current and reference lengths of the 
myocardial strip. σf and σs are corresponding stress values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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small stretches (up to approx. λf=1.1 and λs=1.15). For higher stretches, 
however, the curves based on the reconstructed mesh are noticeably 
closer to the GT curve than those based on the mean mesh. For HV B we 
record an almost perfect agreement between the GT curves and those 
based on the reconstructed mesh, both for the stretches along the 
myocyte direction and along the sheet direction. As in the HV A case, the 
curves based on the mean mesh deviate considerably from the GT curve 

for high stretches, indicating a much softer myocardium inferred due to 
the very low stress for high stretches compared to the GT curves. Finally, 
there is a very close agreement between the curves obtained for the CNN 
reconstructed geometries and those for the original geometries and the 
GT curves. On the other hand, the curves predicted for the mean ge-
ometry deviate noticeably from the remaining curves, especially for 
higher stretches, which means very different material properties infer-
red by using the mean geometry. 

4. Discussion 

4.1. Summary 

We have developed a two-stage Deep Learning framework for auto-
matic prediction of the LV geometry directly from CMR cine images. The 
first stage of the framework, the segmentation network, provides accu-
rate annotations of LV wall for both SA and LA images. The second stage 
of the framework, the geometry prediction network, uses the predicted 
segmentations from the first stage to reconstruct a 17k-dimensional LV 
geometry. We have shown that this two-stage approach leads to 
considerably more accurate LV geometry reconstructions than the pre-
vious approach from [19]. In addition, we have introduced further en-
hancements, such as aligning the LA images and GT LV geometry 
reconstructions, which allow for a substantial reduction in reconstruc-
tion error. 

In the context of cardiac-mechanic parameter inference, we have 
demonstrated that the LV geometry reconstructions from our two-stage 
framework can attain results that are much closer to those obtained with 
the GT, manually segmented geometries, than the results attained by 
using the mean geometry, in the sense of leading to more comparable 
stretch-stress curves or lower values of the loss objective function in Eq. 
(7). 

4.2. Principal component analysis 

Recently, there has been substantial interest in LV geometry repre-
sentation for cardio-mechanical modelling by means of statistical 
dimension reduction techniques. In particular, methods based on PCA 
[42] have been especially popular. The study in [43] implemented PCA 
for the purpose of load-free geometry estimation in the context of 
inferring the passive stiffness of the myocardium. The work in [44] 
considered a PCA-reduced geometry representation of the LV geometry 
in a deep neural network model. The neural network approximated the 
diastolic filling process with the aim to infer the mechanical behaviour 
of the myocardium. Our work relates to this strand of literature as we 
apply PCA within our geometry reconstruction network. This provides 
an essential dimension reduction and regularization step, enabling the 
application of convolutional neural networks to learn the LV geometry 
from CMR images when the training data are comparatively small (in the 
order of several hundred exemplars). The optimal number of principal 
components has been decided by cross-validation. Using more compo-
nents allows extra flexibility but at increased risk of overfitting, while 
using fewer components fails to sufficiently explain the variation in the 
data. However, the optimal number of principal components depends on 
the data set size and can be expected to increase as larger data sets may 
become available in the future. See also the related discussion in Section 
4.4. 

4.3. Applications and potential impact in the clinic 

4.3.1. Statistical emulators 
As argued in Section 2.5, solving the cardiac mechanic equations 

must be done numerically. However, a single run of the associated for-
ward simulator (see Fig. 6) typically takes 8–15 min. During inference, 
forward simulations have to be carried out repeatedly as part of an 
iterative optimization procedure, leading to computational execution 

Table 6 
Bayesian optimization, real data study: final parameter estimates (parameters 
leading to the minimum value of the objective function) for four healthy vol-
unteers (HVs) obtained with the reconstructed geometry (geo.), the original 
geometry and the mean geometry. BO repeated with two algorithms (target 
surrogates, targ. and partial error surrogates, part.) for basic uncertainty 
quantification.  

Subject Reconstructed geo. Original geo. Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A 
θ1  0.932  0.800  1.429  1.434  0.163  0.304 
θ2  2.663  2.449  2.585  2.569  1.980  1.952 
θ3  0.113  0.104  0.150  0.132  0.120  0.136 
θ4  1.112  3.163  0.144  0.240  4.858  3.579  

HV B 
θ1  0.100  0.200  0.100  0.100  0.958  0.750 
θ2  1.909  1.845  0.950  1.301  0.907  1.234 
θ3  0.113  0.218  2.879  1.751  4.993  4.971 
θ4  5.000  4.360  4.657  4.702  0.598  0.121  

HV C 
θ1  1.125  1.173  1.150  1.358  0.957  1.138 
θ2  0.896  0.839  1.667  1.342  1.957  0.669 
θ3  5.000  4.631  0.108  0.790  0.100  4.985 
θ4  0.719  1.541  4.986  5.000  4.999  1.079  

HV D 
θ1  2.338  2.189  0.901  0.969  4.998  4.999 
θ2  0.948  1.151  1.447  1.492  0.271  0.260 
θ3  2.044  1.449  0.107  0.322  0.100  0.519 
θ4  0.142  0.112  2.180  0.545  0.129  0.114  

Table 7 
Bayesian optimization, synthetic data study: the lowest values of the objective 
function (×100) for four healthy volunteers (HVs) obtained with the recon-
structed geometry (geo.), the original geometry and the mean geometry. BO 
repeated with two algorithms (target surrogates, targ. and partial error surro-
gates, part.) for basic uncertainty quantification.  

Subject Reconstructed geo. Original geo. Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A  0.449  0.449  0.000  0.000  5.195  5.197 
HV B  0.446  0.430  0.015  0.001  0.247  0.247 
HV C  0.809  0.800  0.003  0.001  1.685  1.666 
HV D  1.253  1.253  0.000  0.001  5.643  5.642  

Table 8 
Bayesian optimization, synthetic data study: relative RMSEs from Eq. (9) be-
tween the parameters leading to the minimum value of the objective function 
and the GT parameter values for four healthy volunteers (HVs) obtained with the 
reconstructed geometry (geo.), the original geometry and the mean geometry. 
BO repeated with two algorithm (target surrogates, targ. and partial error sur-
rogates, part.) for basic uncertainty quantification. Bold font: subjects for which 
the reconstructed mesh outperforms the mean mesh.  

Subject Reconstructed geo. Original geo. Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A  0.1999  0.1964  0.0138  0.0116  0.4763  0.4862 
HV B  0.1325  0.0421  0.1706  0.0087  0.9992  1.0264 
HV C  0.6377  0.1362  0.1352  0.0312  0.6567  0.1057 
HV D  0.1490  0.1770  0.0270  0.0297  0.5789  0.5626  
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times of several days, which is not viable for a practical clinical decision 
support system. Consequently, there is currently much interest in sur-
rogate models and statistical emulators, in which a substantial part of 
computations is performed in advance, prior to recording any subject 
specific measurements. 

Recent proof of concept studies in the context of cardiac mechanical 
modelling have demonstrated that the computational complexity can be 
reduced by several orders of magnitude at negligible loss in accuracy 
[33,34,45]. However, those studies assumed that the LV shape, extrac-
ted from a CMR scan of a healthy volunteer, was fixed. For real clinical 
applications based on personalized medicine, variations of the LV ge-
ometry have to be included in the emulator. Unfortunately, the explo-
ration of the full geometry representation space, discussed in Section 
2.1.2, would require the impossible task of building an emulator in 17k 
dimensional space. A solution to this problem is to consider a low- 
dimensional representation of the LV geometry, in a space that can be 
more carefully explored during emulator training. For clinical purposes 
we also require an efficient method for obtaining a projection of a new 
geometry into this space, ideally requiring minimal manual intervention 
by a practitioner. Our two-stage method does exactly this, by allowing 
prediction of a low dimensional representation directly from CMR 
images. 

4.3.2. Other applications 
Accelerating and automating the process of LV geometry recon-

struction is a critical step towards personalized medicine that will 
obviate inefficient manual CMR image processing for LV geometry 
extraction. Once reconstructed, the predicted LV geometries can serve 
multiple purposes, of which the most important from our perspective is 
numerically solving cardiac mechanics equations with the finite element 
method. Moreover, the predicted LV geometries are valuable for the 
analysis of a number of clinically relevant quantities, such as LV volume, 
wall thickness and cavity volume. Finally, they will provide clinicians 
with a promising 3D visualization tool. 

In addition, our proposed approach delivers automatically obtained 
LV wall segmentation, both in SA and LA images. As we have demon-
strated, the segmentation accuracy on the test set is high, over 80% for 
the wall and over 90% for the cavity. If higher accuracy is required, the 

predicted segmentations can be used as initializations that can be further 
manually corrected. 

4.4. Limitations 

4.4.1. Performance against GT geometries 
While the improvement over the mean geometry performance as a 

reference benchmark is encouraging, there is still a significant perfor-
mance gap between the reconstructed and the GT geometries, both in 
terms of direct geometric features, and derived features related to 
cardio-mechanics (cardio-mechanic parameters and stretch-stress 
curves). This suggests that further work is required to achieve the ulti-
mate objective of reliable and automated clinical decision support. 

4.4.2. Limited data 
The main challenge for future work is enlarging the training set size. 

The set of LV geometries available in our study is limited to about 200 
exemplars. This does not bring out the full potential of CNNs (due to the 
need for restrictive regularization), which have been conceived for “big 
data” problems. Obtaining a dataset orders of magnitude larger than the 
current one is fundamentally difficult due to the excessive computa-
tional cost of reconstructing a single LV geometry. 

4.4.3. Motion correction 
Motion artefacts, resulting from both cardiac and respiratory cycles 

and involuntary patient movement, still remain a great challenge in 
CMR imaging [46,47], in particular for acute-MI patients with shortness 
of breath. Accurate reconstruction of the LV geometry is critical for 
biomechanical studies [3,1], thus motion correction is generally needed 
when constructing patient-specific geometries from CMR cine images. In 
this study, a rigid-body translation has been applied to realign the 
endocardial and epicardial boundaries from SA images to the three LA 
images, as in [4], so that the ventricular boundaries from the SA images 
overlap with wall boundaries in LA images. Other approaches, such as 
tracking the imaging plane throughout the cardiac cycle, and deform-
able image registration schemes would further reduce motion artefacts 
[46]. However, it would be challenging to apply those methods to our 
CMR images retrospectively, thus a simple rigid-body translation has 

Fig. 13. Bayesian optimization, synthetic data study: relative RMSEs from Eq. (9) between the parameters leading to the minimum value of the objective function 
and the GT parameter values for four healthy volunteers (HVs) obtained with the reconstructed geometry (Recon. mesh.), the original geometry (Org. mesh) and the 
mean geometry (Mean mesh). BO repeated with two algorithms (target surrogates, targ. and partial error surrogates, part.) for basic uncertainty quantification. 
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been used. Currently, there may be confounding effects from incom-
pletely corrected motion artefacts, which are likely to lead to spurious 
deformations of excessively skewed or bulged LV geometries [10]. Since 
machine learning has been successfully applied to CMR image analysis 
and interpretation [13], we expect that incorporating machine-learning 
based motion correction algorithms into the developed segmentation 
network will help alleviate motion artefacts. 

4.4.4. Stiffness estimation in diseased hearts 
LV geometries for both healthy volunteers and MI patients can be 

predicted by the automatic CNN-based framework, while we have only 
applied the Bayesian inference scheme to four healthy volunteers for 
estimating myocardial stiffness. To estimate myocardial stiffness in MI 
patients, a generalized cardiac MI model would be needed to account for 
material heterogeneity in the remote functional region and infarction 
region [4], leading to increased model complexity. Usually, late‑gado-
linium enhanced images need to be integrated into the 3D LV model for 
modelling the MI region. This process is further complicated by the fact 
that direct measurements of ventricle pressure values are not possible 
due to the invasive nature of such procedures. Nevertheless, the 
Bayesian inference procedure presented in this study can be directly 

applied to other heart diseases which are associated with a global 
change in material property, for example cardiac hypertrophy [48,20]. 

4.4.5. Bi-ventricular geometry prediction 
In the present study, only the LV geometry has been directly learned 

from CMR images. By including both LV and RV (right-ventricular) ge-
ometries, there will be more geometrical features in the data that could 
potentially enhance the accuracy and reliability of CNN-based geometry 
prediction. For example, Duan et al. [18] combined a multi-task deep 
learning approach along with atlas propagation to segment short-axis 
CMR volumetric images by learning the segmentation and landmark 
localization simultaneously, and ventricular shape prior knowledge was 
applied to overcome image artefacts. In future work, we will explore the 
prediction of the bi-ventricular geometry directly from conventional 
CMR images by incorporating into our CNN prior knowledge on features 
such as ventricular shapes, geometrical landmarks and measured wall 
motions. 

5. Conclusions 

We have developed an automatic CNN-based framework for 

Fig. 14. Bayesian optimization, synthetic data study: stretch-stress curves for HV A and HV B (in rows). Left: stretches along the myocyte direction, right: stretches 
along the sheet direction. Blue: BO with target surrogates (targ.), red: BO with partial error surrogates (part.), solid lines: reconstructed geometries (recon. mesh), 
dashed lines: original geometries (org. mesh), dotted lines: mean geometries (mean mesh), solid black lines: ground truth values. Solid black line: ground-truth 
curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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predicting LV geometries directly from CMR images, without the need to 
perform manual annotations. We have recorded a noticeably lower LV 
geometry reconstruction error than previous methods. We have also 
demonstrated that our predicted LV geometries perform closer to the 
original, ground-truth geometries than the LV mean geometry in the 
context of cardiac mechanic parameter inference. A low-dimensional 
representation of the LV geometry delivered as a by-product of our 
proposed framework has the potential to be a stepping stone towards 
patient-specific statistical emulation, as necessary for applications in 
personalized medicine. 
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curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

L. Romaszko et al.                                                                                                                                                                                                                              

https://github.com/aborowska/LVgeometry-prediction
https://github.com/aborowska/LVgeometry-prediction


Artificial Intelligence In Medicine 119 (2021) 102140

18

submission. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper.  

Appendix A. Additional results 

A.1. Bayesian optimization: real data 

Figs. A.16 and A.17 visualize the results from Table 6 by means of Bland-Altman plots. They are based on taking the estimates obtained with the 
original meshes as benchmarks and calculating the differences between this benchmark and the estimates obtained with other mesh types, i.e. CNN- 
reconstructed meshes (blue markers) and the mean mesh (red markers). For each mesh type we take the “representative” estimates, i.e. average 
estimates between two BO runs (with different emulation schemes). Since the differences can be both positive and negative we can see in Fig. A.16 that 
on average there is hardly any difference between the performance of reconstructed meshes and the mean mesh (solid horizontal lines). The former, 
however, produce differences much more concentrated around 0 as can be seen by considerably narrower confidence bounds (dashed lines). This can 
be easily seen in Fig. A.17, in which the absolute values of the differences against the benchmark are depicted. Here we can see that the mean absolute 
difference with respect to the benchmark is much narrower for the estimates obtained with reconstructed meshes compared with those obtained with 
the mean geometry.

Fig. A.16. Bayesian optimization, real data study: Bland-Altman plot comparing the differences between the final “representative” estimates based on the original 
and the reconstructed meshes (blue), and the differences between the final estimates based on the original meshes and the mean mesh (red). Each symbol represents a 
different parameter (circle – θ1, square – θ2, triangle – θ3, star – θ4) so it occurs eight times, twice (blue, red) for each HV (A, B, C, D). The horizontal lines are the 
mean (solid) and ±1.96 standard deviation (dashed). For each mesh type (original, reconstructed, mean) we take the average between two BO runs (with target and 
partial error emulation) as the “representative” estimate for the corresponding HV and mesh type.  
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Fig. A.17. Bayesian optimization, real data study: Bland-Altman plot comparing the absolute values of the differences between the final “representative” estimates 
based on the original and the reconstructed meshes (blue), and the differences between the absolute values of the final estimates based on the original meshes and the 
mean mesh (red). Each symbol represents a different parameter (circle – θ1, square – θ2, triangle – θ3, star – θ4) so it occurs eight times, twice (blue, red) for each HV 
(A, B, C, D). The horizontal lines are the mean (solid) and qL and qU, where qL and qU are empirical 2.5 and 97.5 percentiles, respectively, of the absolute differences. 
For each mesh type (original, reconstructed, mean) we take the average between two BO runs (with target and partial error emulation) as the “representative” 
estimate for the corresponding HV and mesh type. 
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