
Gaussian process enhanced semi-automatic approximate
Bayesian computation: parameter inference in a

stochastic differential equation system for chemotaxis

Agnieszka Borowskaa,∗, Diana Giurghitaa, Dirk Husmeiera,∗

aSchool of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Chemotaxis is a type of cell movement in response to a chemical stimulus which
plays a key role in multiple biophysical processes, such as embryogenesis and
wound healing, and which is crucial for understanding metastasis in cancer
research. In the literature, chemotaxis has been modelled using biophysical
models based on systems of nonlinear stochastic partial differential equations
(NSPDEs), which are known to be challenging for statistical inference due to
the intractability of the associated likelihood and the high computational costs
of their numerical integration. Therefore, data analysis in this context has been
limited to comparing predictions from NSPDE models to laboratory data us-
ing simple descriptive statistics. We present a statistically rigorous framework
for parameter estimation in complex biophysical systems described by NSPDEs
such as the one of chemotaxis. We adopt a likelihood-free approach based on
approximate Bayesian computations with sequential Monte Carlo (ABC-SMC)
which allows for circumventing the intractability of the likelihood. To find in-
formative summary statistics, crucial for the performance of ABC, we propose
to use a Gaussian process (GP) regression model. The interpolation provided
by the GP regression turns out useful on its own merits: it relatively accurately
estimates the parameters of the NSPDE model and allows for uncertainty quan-
tification, at a very low computational cost. Our proposed methodology allows
for a considerable part of computations to be completed before having observed
any data, providing a practical toolbox to experimental scientists whose modes
of operation frequently involve experiments and inference taking place at dis-
tinct points in time. In an application to externally provided synthetic data we
demonstrate that the correction provided by ABC-SMC is essential for accu-
rate estimation of some of the NSPDE model parameters and for more flexible
uncertainty quantification.
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1. Introduction

Cell migration is a complex phenomenon which is frequently analysed as a
biophysical system, e.g. using a reaction–diffusion model. Chemotaxis is a type
of directed cell movement in which cells are steered by chemical signals [1]. It
is of high interest to biophysicists as cell migration in response to a chemical
gradient plays a key role in a range of critical processes, such as wound healing,
embryogenesis and cancer metastasis. For this reason it has been a subject of
active research, see e.g. Neilson et al. [2], Tweedy et al. [3], MacDonald et al.
[4] and references therein. Neilson et al. [2] attribute chemotaxis to pseudopod
formation and Tweedy et al. [3] demonstrate the impact of cell shapes on cell
movement. MacDonald et al. [4] focus on approximating the solution to cou-
pled bulk–surface reaction-diffusion equations by devising a novel finite element
method. The previous literature has formalised biophysical hypotheses using a
model based on a system of nonlinear stochastic partial differential equations
(NSPDEs). NSPDE models are known to be challenging for statistical inference
due to the intractability of the associated likelihood and the high computational
costs of the numerical integration. Therefore, data analysis in this context has
been limited to comparing predictions from NSPDE models to laboratory data
using simple descriptive statistics, such as correlations of principal components
extracted from Fourier descriptors of cell contours in Tweedy et al. [3], or as-
sessing visual similarity between features extracted from simulated and real cells
by Neilson et al. [2]. We aim to fill the gap for rigorous statistical inference in
complex biophysical systems described by NSPDEs focusing on the model for
chemotaxis.

We point out the main difference of our approach to more main-stream meth-
ods in physical modelling. Research in physics often starts from a mechanistic
model and then aims to understand how different parameter regimes are related
to certain features in the data, e.g. attractor characteristics, fractal dimensions
and potential phase transitions. This type of research focuses on the model
and views features in the data as emergent properties. Our research follows the
opposite direction. Given the data, we aim to find the parameters of the model
that are most consistent with the observations. Conceptually, these parame-
ters are those that maximize the likelihood of the data (classical statistics) or
lie in the high posterior probability region (Bayesian statistics). For complex
nonlinear stochastic models, as studied in the present paper, the likelihood is
analytically intractable, and data features, like attractor characteristics, are ex-
tracted for approximate inference. Thus, the features play a different role in our
approach compared to a standard approach in physics, as rather than starting
from the model to predict these features, we start from the features to calibrate
the model.

One approach to parameter estimation in complex stochastic models is pro-
vided by the broad family of pseudo-marginal methods, see Andrieu and Roberts
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[5], Beaumont [6] and Andrieu et al. [7]. Even if it is not possible to analyt-
ically evaluate the likelihood in the model of interest, like in the case of the
NSPDE models for cell movement, these algorithms are guaranteed to converge
to the exact posterior distribution provided that an unbiased and non-negative
likelihood estimator can be devised [5]. However, obtaining such an estima-
tor in the case of NSPDE models turns out computationally prohibitive due to
the complexity and dimensionality of the system in question. Moreover, even
if we were able to devise an estimator with both desired properties, it would
likely be characterised by a huge variance (due to the high dimensionality of the
system), leading to a slowly mixing Markov chain Monte Carlo algorithm, see
Deligiannidis et al. [8].

A different approach to parameter inference in NSPDE models is provided
by the so-called likelihood-free methods. These are simulation-based algorithms
typically used to perform inference in complex stochastic models for which the
likelihood is hard or impossible to evaluate but for which forward simulations
are relatively easy to carry out. This category includes applications involving
physical models which summarise and explore dynamic states of complex bio-
physical process. More specifically, approximate Bayesian computation (ABC)
[9] and the methods based on synthetic likelihood [10, 11] have recently gained
popularity in molecular biology and biophysics, with applications ranging from
model calibration and exploration of leukocyte cell migration inside zebrafish
embryos [12] to parameter inference in models describing cell motility and pro-
liferation [11].

In ABC algorithms the likelihood calculation is replaced by simulating arti-
ficial data from the model given different parameter values and comparing these
simulated datasets with the observed data. For high dimensional outputs, the
comparison is typically made in terms of summary statistics, which are features
extracted from the artificial and the observed datasets. If a chosen metric of the
difference between the summary statistics is below a given threshold, the param-
eters used to generate the artificial dataset are considered to be a sample from an
approximate posterior distribution. However, extracting low-dimensional sum-
mary statistics from the data turns out to be one of the most difficult aspects of
ABC as, in general, this task is problem-specific and hence hard to generalise.
A seminal step towards making summary statistics construction automatic was
achieved by Fearnhead and Prangle [13], who propose a general methodology for
constructing summary statistics called “semi-automatic ABC”. Their framework
relies on using linear regression to combine several features extracted from the
data into a single summary statistic, on which the ABC inference is based. An
obvious limitation of this approach is restricting the space of summary statistics
to its linear manifold, as this assumption is likely to provide very crude param-
eter estimates in particular for highly-nonlinear problems ubiquitous in biology
and physics.

In the present paper, we first propose a new efficient approach to obtaining
summary statistics for ABC based on a Gaussian process (GP) regression model,
see Rasmussen and Williams [14] for a detailed treatment of GPs. Our frame-
work extends the one of Fearnhead and Prangle [13] and is motivated by the
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challenges of formal statistical inference for the biophysical cell migration model
of Tweedy et al. [3]. Given a highly non-linear relationship between parameter
and observation space in the cell migration problem, a flexible GP regression
framework provides more accurate and efficient summary statistics for ABC.
Second, the interpolation provided by the GP regression turns out useful on its
own merits as it alone allows us to fairly accurately estimate the parameters of
the NSPDE model, including approximate uncertainty quantification (though
under the Gaussianity restriction), at a very low computational cost. Third, we
demonstrate that the correction provided by the ABC simulations is required for
more flexible uncertainty quantification (compared to using the GP regression
only) and for accurate estimation of some of the NSPDE model parameters, in
particular for those for which the prior calibration domain turns out too narrow
compared to the ground-truth values.

We note that combining insights from GP regression and ABC analysis has
already been proposed by e.g. Wilkinson [15]. However, Wilkinson [15] does not
address the issue of constructing summary statistics for ABC, which – due to the
high-dimensional observation space in the NSPDE model – is of crucial interest
to us. A further difference is that the work of Wilkinson [15] is based on the
history matching approach [see 16]. This technique is computationally efficient
but greedy: it sequentially rules out parameter regions which are inconsistent
with the data and may fail for multimodal distributions. Moreover, it does
not provide a full description of the posterior distribution as it outputs “non-
implausible regions” in which the parameters are weighted equally.

Our proposed methodology allows for a considerable part of computations to
be completed before having observed any data. This provides a practical toolbox
to experimental scientists whose modes of operation often involve experiments
and inference taking place at distinct points in time, with long time necessary to
set up equipment and develop a model and potentially little time for statistical
inference. The methodological framework we discuss in the present paper allows
this time, required for the acquisition of the data, to be exploited for carrying
out precomputations relevant to inference from data before actually seeing any
data. This substantially reduces the computational costs of inference that would
otherwise have to be incurred at the time when the data become available. In
an application to externally provided synthetic data we demonstrate that our
computational inference framework can tackle heterogeneous high-dimensional
data stemming from a biophysical model with a substantial level of complexity
in a time-efficient manner.

The rest of this paper is organised as follows. In Section 2 we present the
NSPDE model of cell movement developed by Neilson et al. [2] and Tweedy et al.
[3] and we discuss the NSPDE simulator generating data from this system. We
further discuss a typical pipeline in experimental sciences, in which experiments
and inference are likely to be time-divided, and link it to the desirable pipeline of
an inference scheme. We use the insights gained to develop our methodological
framework, presented in Section 3, where we discuss the three essential steps
in turn: feature extraction to reduce the dimensionality of the outputs from
the NSPDE simulator; predicting the parameters of the NSPDE model using
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GP regressions fitted to the collected features; ABC simulations with summary
statistics constructed using the GP regressions. The latter ABC step allows us
to expand the analysis outside the initial design on which GP regressions were
trained. We report the results in Section 4, separately for GP regressions and
for ABC. Section 5 concludes with an outline of further research.

2. Biophysical model of cell migration

Cell migration due to chemotaxis can be modelled with a system of nonlinear
stochastic partial differential equations (NSPDEs) describing the behaviour of
migrating cells using a pseudopod-centred mechanism, see Neilson et al. [2] and
Tweedy et al. [3]. The boundary of a cell is assumed to move in response to an
auto-activating internal process, disturbed by external chemoattractants. We
adhere to the system defined and discussed by Neilson et al. [2] and adopt
the implementation following that of Tweedy et al. [3]. In particular, we use
the NSPDE simulator detailed by Tweedy [17]. The most important notation
conventions used in this and the following sections can be found in Nomenclature
section at the end of the present paper.

2.1. NSPDE system and simulator

The NSPDE system of Tweedy et al. [3] models cell shape behaviour by a
time-evolving contour Γ(t) responding to three biochemical species: local acti-
vator a(γ, t) (LA), local inhibitor b(γ, t) (LI) and global inhibitor c(t) (GI). The
former two are local in nature, i.e. they are defined for each point γ ∈ {R|0 <
γ < |Γ(t)|} around the contour for each time point t, where |Γ| denotes the total
length of the boundary. The evolution of the three species is specified as follows

∂a(γ, t)

∂t
= Da

∂2a(γ, t)

∂γ2
+

s(γ, t)
(
a(γ,t)2

c(t) + ba

)
(kM + b(γ, t))(1 + saa(γ, t)2)

− daa(γ, t), (1)

∂b(γ, t)

∂t
= Db

∂2b(γ, t)

∂γ2
+ kba(γ, t)− dbb(γ, t), (2)

∂c(t)

∂t
=

rc
|Γ|

∮
Γ

a(γ, t)dγ − rca(γ, t), (3)

s(γ, t) = (1 + drR) +

(
C(γ, t)

C(γ, t) + kd

)
(1 + drR) , (4)

∂Γ(t)

∂t
= (faa(γ, t)− λ(A(t)−A0)) Γ̂(γ, t), (5)

where s(γ, t) in (4) represents the strength of the chemosensation stimulus
around the point γ and time t in terms of external concentration C(γ, t), while
(5) defines the evolution of the cell boundary Γ(t). R in (4) is a random noise
term, uniformly drawn from [0, 1], introduced to break the symmetry of the
system to allow for pseudopod formation. In (5), Γ̂(γ, t) denotes the unit vector
that is outward normal to the boundary at point γ, A(t) is the cell area at time
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t and A0 is the so-called “natural area” of the cell, see Tweedy et al. [3]. The
remaining quantities (fa, rc, kb, db, Db, kM , sa, ba, Da, da, dr, λ, kd) are pa-
rameters of the model; we present most of them in Table 1 and refer to Neilson
et al. [2] and Tweedy et al. [3] for the explanation of the remaining ones.

The details of the stochastic system (1)–(5) are presented in Tweedy et al.
[3]. In essence, the equations of the Meinhardt [18] model describing an auto-
activating/autonomous formation and modulation of pseudopods in response to
an external chemotactic gradient are coupled with an evolving cell boundary.
The Meinhardt [18] model uses three reaction-diffusion equations, (1), (2) and
(3), to describe an autocatalytic and saturating LA, a destabilising LI locally
absorbing peaks of LA, and a rapidly equilibrating GI to allow for a “com-
petition” between all membrane points, respectively. Hence, the model adds
LI to the standard local-excitation, global inhibition model [19] to destabilise
dominant regions of activation.

The Meinhardt [18] model considers a static cell perimeter and does not allow
for cell movement. Neilson et al. [2] introduce the cell surface evolving according
to (5) to the Meinhardt [18] model. To this end, the evolving surface finite
element method of Dziuk and Elliott [20] is applied under the assumption that
each point on the cell membrane moves outwards in the direction specified by
the normal to boundary at that point [21], with the LA concentration specifying
the protrusion rate. To maintain an approximately fixed cell area over time, the
outward movements are counteracted by retractions based on the local curvature
of the cell boundary.

The random noise s(γ, t) is generated from a stochastic process given by
the stochastic equation in (4). The first summand on the right hand side of
(4) represents a noisy autocatalytic activation while the second summand re-
lates to noisy chemotactic signal. The derivation of (4) is provided in Neilson
et al. [22], who argue that this formulation is biologically more realistic than the
one originally used by Meinhardt [18] (requiring localising the highest chemoat-
tractant concentration and based on a cosine function to model the behaviour
of the chemical signal). The reason why a stochastic component is necessary
in the model is that it introduces perturbations and instabilities into the sys-
tem required to break its symmetry. The asymmetries are the driving forces of
pseudopod formation. We note that deterministic systems can provide limits for
large stochastic systems via averaging effects, here, however, we are concerned
with a single cell model so those effects are not available.

The three reaction-diffusion equations of this model (1)–(3) describe dynamic
pattern formation, where the concentration of the local activator is proportional
to the outward force acting on the membrane, while the retraction force is
provided by membrane tension.

The system (1)–(5) does not admit an analytical solution and hence needs
to be solved numerically. Tweedy et al. [3] employ the finite element method
(FEM), in which the NSPDE space is discretised using a finite element mesh
and the NSPDEs are numerically integrated over the resulting discretisation.
In particular, in the approach adopted by Tweedy et al. [3], the finite element
points are independently uniformly drawn from the membrane in each time
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period, so the recorded samples do not represent the same points in time.
Our aim is to infer the following 10 parameters of the system

θ = (fa, rc, kb, db, Db, kM , sa, ba, Da, da)T ,

in which we follow Tweedy [17]. The remaining parameters of the system are
treated as fixed in the NSPDE simulator. We present parameter meanings and
their default values [from 17] in Table 1. By default, the NSPDE simulator
describes a simulation of duration of 100000 arbitrary time units u and out-
puts samples every 100u (evenly spaced), which results in the output of time
dimension T = 1000.

Table 1: Parameters of the system (1)–(5) to be inferred for Fully Observed Data and Partially
Observed Data as specified by Tweedy [17] together with their boundaries we assumed for preparing
the calibration samples, (see Section 2.2, the last paragraph, for a discussion of the challenge in
specifying the boundaries and Section 4.1 for a discussion of the chosen boundaries).

Design boundaries

Parameter Meaning Default value θ̃ Lower Upper
fa rate of the outward force from LA 0.0015 0.0008 0.003
rc response speed of GI 0.07 0.035 0.14
kb birth rate of LI 0.0028 0.0014 0.0056
db death rate of LI 0.013 0.0065 0.020
Db diffusivity of LI 0.045 0.0225 0.09
kM Michaelis-Menten constant for LA 0.16 0.08 0.32
sa saturation of autocatalysis of LA 7.0E-5 3.5E-5 1.4E-4
ba basal production level of LA 0.1 0.05 0.2
Da diffusivity of LA 0.025 0.0125 0.05
da death rate of LA 0.02 0.01 0.04

2.2. Output data and their challenges

The NSPDE simulator generates five outputs: a time series of XY coordi-
nates of finite element nodes representing the cell membrane; a univariate time
series of the GI level; and multivariate time series of LA, LI, S values over the
membrane. Figure 1 illustrates outputs from the NSPDE simulator generated
using the default parameter values. Below we discuss the challenges encountered
when working with the NSPDE simulator and its outputs.

Stochastic system. The system in question is stochastic, which means that each
time we run the NSPDE simulator, a different realisation is obtained, even for
the same θ. Figure 2 illustrates this property by presenting two outputs obtained
with the default parameter setting, with darker contours being recorded later in
time. One can see that qualitatively both runs are very similar (in terms of the
cell shape and cell movement over time), despite different “nominal”, or actual,
locations of the membrane (e.g. in Simulation 1, the cell moves from around 300
to 500 along the x-axis, while in Simulation 2 it moves from around 250 to 400 in
the x-axis). A standard approach to deal with stochastic problems is provided

7



Figure 1: Outputs generated using the default parameter values θ̃. From left to right, top row:
cell membrane evolution in time for t = 1, 2, . . . , 1000 (the shade indicates the time point, from
early – light, to late – dark); cell membrane evolution in time for t = 1, 101, . . . , 901; time series of
GI for t = 1, 2, . . . , 1000 (left axis) and for t ≥ 100 (right axis); time series of area (left axis) and
perimeter (right axis); time series of area-perimeter ratios. Second row: cell contour at t = 100;
value of stochastic signal s over the cell membrane at t = 100; value of s over the cell membrane
at t = 500; value of s over the cell membrane at t = 1000; time series of means over space of s for
t = 1, 2, . . . , 1000 (left axis) and for t ≥ 100 (right axis). Third row: cell contour at t = 500; value
of LA over the cell membrane at t = 100; value of LA over the cell membrane at t = 500; value of
LA over the cell membrane at t = 1000; time series of means over space of LA for t = 1, 2, . . . , 1000
(left axis) and for t ≥ 100 (right axis). Bottom row: cell contour at t = 1000; value of LI over the
cell membrane at t = 100; value of LI over the cell membrane at t = 500; value of LI over the cell
membrane at t = 1000; time series of means over space of LI for t = 1, 2, . . . , 1000 (left axis) and
for t ≥ 100 (right axis).

by likelihood-based inference, however, as discussed in the Introduction, for
high-dimensional and complex systems, such as the biophysical cell migration
model, likelihood computation becomes infeasible. In consequence, we proceed
with likelihood-free inference based on features extracted from the data. The
extracted features need to be similar for stochastic outputs generated using the
same parameters hence they cannot depend on e.g. “nominal” values of the cell
membrane locations. On the other hand, appropriate features need to allow us
to differentiate between distinct parameter values.

Varying output dimensions. The FEM implementation of Tweedy et al. [3] al-
lows the number of finite element nodes to vary across simulations and even
within a single simulation. These authors add or remove the nodes in consec-
utive iterations depending on their density on the evolving line. For instance,
when the cell front expands, nodes are added to maintain discretisation accu-
racy, while as the cell rear retracts nodes need to be removed as they become too
dense. In roughly 35% of our simulations (constituting our training calibration
sample, to be discussed later) the spacial dimension of the generated matrices
was constant over time and equal to the initial size of 79 finite element points.
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Figure 2: Two different realisations from the NSPDE simulator obtained using the default param-
eter values θ̃: cell contours (XY coordinates) plotted every 100th time point.

For most parameters, however, cells were growing (up to 407 points) as shown
in Figure 3. In several rare cases we observed shrinking of cells (down to 58
points).

Figure 3: Histogram of spacial dimension sizes (x-axis) in the training calibration sample for the
time-varying cases (observed in approximately 65% of simulations).

Time-unaligned nodes. As discussed above, Tweedy et al. [3] solve the NSPDE
system (1)–(5) using FEM by independently drawing points from the cell mem-
brane in each time period. In consequence, the samples of membrane points
do not represent the same points in time and hence it is not possible to track
the evolution of a given point on the membrane to perform time-series analysis.
Moreover, since the sampled membrane points cannot be interpreted as physical
landmarks on the boundary, the Procrustes method [see 23, for an overview],
commonly applied to analyse shapes and their evolution, was impractical in our
case. Supplementary Material B illustrates the problems related to applying
the Procrustes method in more detail.

Unknown parameter ranges. The NSPDE simulator takes 10 parameters as in-
put, however neither Neilson et al. [2] nor Tweedy et al. [3] explicitly specify
biophysically plausible ranges for these parameters. These ranges might be
(roughly) clear to researchers working on chemotaxis, however they are un-
known to anyone taking the model (1)–(5) at face value. The only information
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clearly available a priori, before running any experiments using the NSPDE
simulator, is the default parameter vector θ̃ as specified by Tweedy [17] (see
Table 1).

2.3. Practical considerations

Next to the output challenges discussed in the previous section there are two
further points that need to be considered, related to practice of laboratory work.
First, modes of operation of experimental scientists often involve experiments
and inference taking place at distinct point in time. This means that typically a
long time is necessary to set up equipment and experiments as well as to develop
a biophysical model. Given time-limited projects, this often leaves researchers
with relatively little time for statistical inference, which by definition requires
data being available. A framework practical to experimentalists should therefore
complete as much of the relevant computations as possible before any data
become available, only relying on the theoretical model.

Second, the outputs from the system (1)–(5) differ with respect to their “ob-
servability”. Ideally, one would be able to measure all the outputs, not only the
evolving cell membrane but also chemical signals, including the chemosensation
at membrane s(γ, t). This, however, might not be feasible in all cases, due to
equipment limitations or physiological properties of the studied environment.
Therefore, we propose to consider two cases of data observability which we call
Fully Observed Data and Partially Observed Data. In the former, we assume
that the researcher is able to accurately record all the outputs from the system,
including the chemical signals. In the latter, we consider a possibly more re-
alistic scenario, in which one can only record the evolving cell boundary. This
reflects a common situation in microscopy without access to spectroscopy.

3. GP-enhanced semi-automatic ABC

In this section we present our proposed methodological inference framework,
summarised in Figure 4. Our final objective is parameter estimation and uncer-
tainty quantification using ABC-SMC (step 4, discussed in Section 3.3). ABC-
SMC is a state-of-the-art computational algorithm for approximate inference
based on features extracted from the data. Even though the algorithms itself is
general, the initial feature extraction phase (step 2) is typically problem-specific
and may be heuristic and reliant on intuition and domain knowledge. In this
sense feature extraction is similar to analysing the outputs from NSPDE model
simulations (step 1, discussed in Section 2.2), which is model-dependent. In
Section 3.1 we discuss how we tackle the challenge of obtaining features from
the high-dimensional outputs from the biophysical cell movement model (1)–
(5). We note that the devised procedure is quite complex (hence we refer to
step 2 in the context as “feature construction” rather than “feature extrac-
tion”) and necessarily tied to the biophysical model under investigation, hence
might not be directly transferable to other physical models. We therefore rec-
ommend skipping Section 3.1 at a first reading. We start discussing our essential
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methodological contribution, general and transferable to other physical models,
in Section 3.2, where we describe how the problem-specific features from step
2 are best combined and weighted so as to improve the approximate parameter
inference and uncertainty quantification in step 3.

Pre-data phase: 
model based

Post-data phase: 
data based

Simulating 
from the 

NSPDE model

Feature  
extraction or 
construction 

Feature 
combination 

and weighting

Estimation and 
uncertainty 

quantification

Methodology:
Heuristic

(domain knowledge, 
intuition)

Section 3.1

Methodology:
GP regression 

Section 3.2

Methodology:
ABC-SMC

Section 3.3

Problem specific General method

Section 2.2

Figure 4: General pipeline of the GP-enhanced semi-automatic ABC framework. Simulating
from any NSPDE model and obtaining features from the resulting outputs is typically problem
specific. General statistical methodology is then used to combine the extracted features with GP
regression for parameter estimation and uncertainty quantification with ABC-SMC. Additionally,
we distinguish the pre-data (model-based) phase and the post-data (data-based) phase. The former
allows the user to perform considerable part of the analysis and computations prior to observing
any data solely based on simulations from the model. In the latter, ABC simulations are run to
make inference over a particular dataset of interest.

Figure 5 illustrates our methodological pipeline applied to the particular
case of the biophysical NSPDE model (1)–(5), to a high extent motivated by the
timeline of a typical experimental project (see Section 2.3). We note, however,
that it emerges as a special case of the general procedure in Figure 4 with the last
two steps (GP regression and ABC-SMC simulations) being directly transferable
to other physical models. Conceptually, feature construction in step 2 is self-
evident. Yet given the high-dimensional and stochastic output from the NSPDE
simulator (approximately half a million per single forward simulation), efficient
feature extraction is a challenging task in this case. Here, by “efficiency” we
mean that on the one hand we need to considerably reduce the dimensionality of
the outputs to a few dozens of variables feasible for GP regression, while on the
other hand still capture the key characteristics of the output data. Therefore,
feature construction plays an important role in our application to the biophysical
NSPDE model (1)–(5). Another application specific element is using the GP
regression to obtain preliminary parameter estimates so that ABC-SMC can be
used to refine these results. There are two main advantages of the final ABC
correction over using the estimates from the GP regression alone. First, the
ABC-SMC is essentially not restricted to the initial compact domain represented
by the training calibration sample, which means that extrapolating beyond the
calibration sample is more robust. Second, uncertainty quantification with ABC
is more flexible as the ABC-posterior distribution is not limited to the Gaussian
distribution (light-tailed and symmetric), which is an inherent consequence of
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Pre-data phase: model based Post-data phase: data based

Time

Data available

GP regression
results

ABC-SMC
results

Simulating 
from the model

Feature 
construction

GP regression ABC-SMC 
simulations

Results availableModel available

Figure 5: Pipeline of the GP-enhanced semi-automatic ABC framework in the context of the bio-
physical cell movement model (1)–(5). The model-based phase allows for performing a considerable
part of the analysis prior to observing any data by just using the model. In this case, the data-based
phase also uses the fitted GP regressions to infer the parameters for the given dataset. Importantly,
all the ABC simulations can only be carried out with the data available.

the chosen form of the regression model (6).

3.1. Feature extraction

As mentioned above, we recommend skipping the details in this section at a
first reading. In general, there are three main requirements which the extracted
features need to satisfy in order for us to consider them “appropriate”. First, the
features should capture changes in the output as parameters change. Second,
the features should be similar for stochastic outputs generated using the same
parameters. Third, for features describing shapes, they should be invariant with
respect to scale, rotation and translation. In addition to these requirements, we
need to distinguish between cell-contour-based features, which could be used for
both Fully Observed Data and Partially Observed Data, and chemical-signals-
based features, which we could use only for Fully Observed Data.

3.1.1. Fourier-transform-based features

Cell shapes generated from the NSPDE simulator are highly variable, both
for a single parameter set as well as across different parameter configurations,
see Figure 11 and Supplementary Material A. Moreover, the lack of alignment of
the finite element nodes over time makes the nominal, absolute location values
(e.g. the mean value of the XY coordinates or the location of the peak of
the LA over the membrane) mostly meaningless. Therefore, it is necessary to
adopt alternative measures to appropriately summarise the observed patterns.
Such a means is provided by Fourier analysis, which is suited to capture the
properties of the shape only, irrespective of its scale, translation or rotation.
For illustration, consider the two cell shapes in Figure 6a: they should lead to
exactly the same features because one cell is just a scaled, rotated and shifted
version of the other. The same holds for the two LA signals in Figure 6b which
differ only with respect to the location of the signal peak. We note that Tweedy
et al. [3] employed Fourier shape descriptors to embed extremely variable cell
shapes into a low dimensional manifold.
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(a) A cell shape generated from the SPDE simulator (left) and its scaled, translated and rotated version (right).

(b) A signal of LA generated from the SPDE simulator in two different time periods.

Figure 6: Shapes originating from a cell contour (top) and a chemical signal (bottom). For each
pair the corresponding power spectra from Fourier analysis are the same.

Fourier-transformed chemical signals. In this subsection we focus on the Fourier
analysis applied to chemical signals, leaving the discussion of the features ob-
tained using Fourier descriptors applied to the cell contours to the next sub-
section. Consider Figure 7 which illustrates a particular type of multivariate
chemical signal1 α(j) e.g. LA, LI or S (blue figures) for different parameter
vectors θ(j), j = 1, . . . ,M . As mentioned in Section 2, all simulations are of
time dimension T = 1000 but their spacial dimensions may vary (both across
θs and within a single simulation for a given θ). We denote the length of the

spacial profile of the signal α
(j)
t at time t by D

(j)
t .

We start with computing Π
(j)
t , the 2-sided power spectrum of α

(j)
t , which

is also of length D
(j)
t , as Π

(j)
t = |fft(α

(j)
t )|2 (where fft is the fast Fourier trans-

form). Since we consider real signals only, we focus on 1-sided power spec-

tra, in which we exclude the 0-period entry Π
(j)
t,1 (the first element of the Π

(j)
t

vector) corresponding to the square of the sum of the signal. Thus, we take

π
(j)
t = Π

(j)

t,2:τ
(j)
t

, where τ
(j)
t is the middle of the 2-sided power spectrum com-

puted as τ
(j)
t = D

(j)
t /2 + 1 for D

(j)
t –even and τ

(j)
t = (D

(j)
t + 1)/2 for D

(j)
t –odd.

We set τ∗ = minj,t{τ (j)
t }, the length of the shortest 1-sided power spectrum in

the sample. For our calibration sample τ∗ = 30, which corresponds to the cells
with the smallest spacial dimension of 58. Finding τ∗ is important as it gives us
the maximum common (over outputs for θs in the calibration sample) dimen-
sion of 1-sided power spectra. This maximum common dimension is necessary
as our ultimate goal is to obtain a matrix Ψ, to which we want to apply PCA,

1We can also specify α
(j)
t differently e.g. as approximate time differences of the raw signals

of LA, LI or S. This means computing for each time point and for each finite element node an
approximate time derivative of a given signal. Approximation is due to using discrete series
but most importantly due to the lack of alignment of finite element nodes over time.
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with ψ(j), the ith row of Ψ, corresponding to θ(j), j = 1, . . . ,M . Hence, what
we extract from different α(j)s needs to be of the same size, even though α(j)s
themselves have a varying spacial dimension.

T

… ……

M

Θ(1) Θ(k) Θ(M)Θ(i)

αt
(i)

Dt
(i)

αs
(k)

Ds
(k)≈2τ*

Figure 7: Finding τ∗, the maximum common (over parameter set {θ(j)}) dimension of 1-sided
power spectra. Blue shaded shapes illustrate single multivariate outputs (e.g. S, LA or LI) for

different θ(j), j = 1, . . . ,M . All outputs have the common time dimension of T = 1000 but varying

space dimension. The signal under consideration α
(i)
t (red) is of dimension D

(i)
t , which might be

higher thanD(k)
s , the one of α(k)

s (black), the shortest signal in {θ(j)} (projected to other signal with

dashed lines). The 2-sided power spectrum of α(k)
s is of length D(k)

s ≈ 2τ∗. Since the signals are
real, their 2-sided power spectra are symmetric, so it is sufficient to consider 1-sided power spectra.
Hence, for all the signals of different length we extract subsets of their 1-sided power spectra of the
maximum common length τ∗ − 1 (subtracting one as we exclude the 0-period entries).

Given a 1-sided power spectrum π
(j)
t , we want to extract its highest mag-

nitudes with the corresponding frequencies. We include the frequencies in the

analysis as they carry information about the shape of the spacial profile α
(j)
t . To

this end, we sort π
(j)
t in descending order to obtain π̃

(j)
t and sort the normalised

frequencies ϕ =

[
1

τ
(j)
t

, . . . ,
τ
(j)
t −1

τ
(j)
t

]
using the same permutation to get ϕ̃. We

consider only the first (τ∗ − 1) values of both sorted sequences and express the
magnitudes in 10 log10 terms. The final part of the input to the matrix for PCA

corresponding to α
(j)
t is given by

ψ̃
(j)
t =

[
10 log10(π̃

(j)
t,1 ), ϕ̃1, 10 log10(π̃

(j)
t,2 ), ϕ̃2, . . . , 10 log10(π̃

(j)
t,τ∗−1), ϕ̃τ∗−1

]
.

Concatenating ψ̃
(j)
t over time

ψ(j) =
[
ψ̃

(j)
1 , ψ̃

(j)
2 , . . . , ψ̃

(j)
T

]
gives us the ith row of the Ψ matrix. Figure 8 illustrates the subsequent trans-

formations of the original signal α
(j)
t and Algorithm 1 summarises the steps of

our procedure.
A similar procedure can be used for univariate series such as GI or univariate

series extracted from multivariate series (e.g. time series of means taken at
each time point over spacial profiles). Since in this case there is no problem of
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Figure 8: Construction of an input to PCA based on the Fourier transformation. Left–right, top–

bottom: α
(j)
t – the original signal of LA at t; Π

(j)
t – the 2-sided power spectrum of α

(j)
t ; π

(j)
t – the

1-sided power spectrum of α
(j)
t ; π̃

(j)

t,1:τ∗−1
– the τ∗ − 1 = 29 highest magnitudes of 1-sided power

spectrum; 10 log10(π̃
(j)

t,1:τ∗−1
) – 10log10 of the highest magnitudes.

changing spacial dimensions (we deal with a univariate series of length T = 1000)
the procedure becomes much simpler. We can consider the whole sorted 1-sided
power spectrum (excluding the 0-period), without the need for extracting a
part of the maximum common length. Formally, for a univariate signal α(j) we

compute Π(j) = fft|(α(j))|2, set π(j) = Π
(j)
2:501 and ϕ = 1

501 [1, . . . , 500] and sort

π(j) to get π̃(j) (sort ϕ using the same permutation to obtain ϕ̃). We then

consider ψ(j) =
[
10 log10(π̃

(j)
1 ), ϕ̃1, . . . , 10 log10(π̃

(j)
500), ϕ̃500

]
.

Fourier-transformed cell contours. To extract relevant information about the
variation of cell shapes (XY coordinates) in time we also use the Fourier trans-
form, however in a different way than for the chemical signals. Before presenting
the details of our approach we note that we also attempted to apply generalised
Procrustes analysis [24], a very popular method in landmark-based morphomet-
rics scenarios [25], to summarise a cell membrane evolving in time. However, this
approach was not successful as highly variable cell contours have no recurring
characteristics which could be used as landmarks, i.e. a discrete set of points
that are homologous (based on mathematical, physical or biological insights) be-
tween cells and different time points. We illustrate the problems encountered in
applying generalized Procrustes analysis in Supplementary Material B, Figure
B.1.

Elliptical Fourier analysis (EFA) provides a viable alternative to landmark-
based methods for shape analysis. This method, together with eigenshape anal-
ysis, belongs to the class of outline analysis methods, which do not compare
homologous points, but rather focus on estimating the coefficients of various
functions fitted to points sampled around the outlines of objects. The basic
idea of Fourier analysis is to decompose a periodic signal into a sum of sine
and cosine functions, this can easily be applied to shape analysis since a closed
outline can be regarded as periodic function [26]. EFA reconstructs the object’s
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Algorithm 1: Obtaining rows of the matrix Ψ for PCA for multivariate
chemical signals using Fourier transform.

Input : index j corresponding to a parameter vector θ(j),
j = 1, . . . ,M ; multivariate chemical signal α(j) (LA, LI or S);
time dimension T of α; the length of the shortest 1-sided

power spectrum τ∗ = minj,t{τ (j)
t } for the sample {θ(j)}.

1 for t = 1 to T do

2 Find D
(j)
t , the effective size of the signal α

(j)
t (by possibly

eliminating its last entries equal to zero).

3 Compute the 2-sided power spectrum: Π
(j)
t = |fft(α

(j)
t )|2 (where fft

is the fast Fourier transform).

4 Take the 1-sided part (since α
(j)
t is real): π

(j)
t = Π

(j)

t,2:τ
(j)
t

, where

τ
(j)
t = D

(j)
t /2 + 1 for D

(j)
t –even and τ

(j)
t = (D

(j)
t + 1)/2 for

D
(j)
t –odd (discard the 0-period entry as it is just the square of the

sum of the signal).

5 Normalise frequencies: ϕ =

[
1

τ
(j)
t

, . . . ,
τ
(j)
t −1

τ
(j)
t

]
.

6 To consider the highest magnitudes (with the corresponding

frequencies): sort π
(j)
t in descending order to get π̃

(j)
t (use the

same permutation to obtain ϕ̃).
7 Express the magnitudes in 10 log10 terms.

8 Set ψ̃
(j)
t =[

10 log10(π̃
(j)
t,1 ), ϕ̃1, 10 log10(π̃

(j)
t,2 ), ϕ̃2, . . . , 10 log10(π̃

(j)
t,τ∗−1), ϕ̃τ∗−1

]
.

9 end

10 Set ψ(j) =
[
ψ̃

(j)
1 , ψ̃

(j)
2 , . . . , ψ̃

(j)
T

]
to obtain the ith row of Ψ.
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outline as a finite sum of ellipses, which is the plane representation of a finite
sum of a sine and cosine curve (also termed a “harmonic”).

In EFA, the outline of a shape is described through a set of points, not
necessarily equally-spaced, sampled on the outline and their corresponding x and
y coordinates. Since we are interested in the cell shape, the outline is described
in terms of the finite element nodes and their corresponding x and y coordinates.
Let P denote the perimeter of a closed outline (which is also the period of the
signal) and define ω = 2π/P . We can write the Fourier decompositions of the
incremental changes of the x and y coordinates as a function of the cumulative
length along the shape’s outline, p, which varies from 0 to P ,

x(p) =
a0

2
+

k∑
n=1

[an cos(nωp) + bn sin(nωp)] ,

y(p) =
c0
2

+

k∑
n=1

[cn cos(nωp) + dn sin(nωp)] ,

where k denotes the number of finite number of points sampled on the shape’s
outline and a0 and c0 are the coordinates of the centroid of the original outline.
As such, each harmonic corresponds to four coefficients, with the two coefficients
for the x projection in the nth harmonic given by the following formulae (cn
and dn for the y projection have analogous expressions)

an =
P

2π2n2

k∑
j=1

∆xj
∆pj

[cos(nωpj)− cos(nωpj−1)] ,

bn =
P

2π2n2

k∑
j=1

∆xj
∆pj

[sin(nωpj)− sin(nωpj−1)] ,

where pj is the cumulative length along the shape’s outline until the jth finite
element point has been reached. The number of harmonics included determines
how good the approximation of the shape is, with the lower harmonics pro-
viding an approximation for the coarse-scale trends in the outline, while the
high-frequency harmonics describe the finer-scale details (see Figure 9 for visu-
alisation of the harmonic contribution to a cell shape).

3.1.2. Anchoring features

The Fourier descriptors discussed above are important to capture qualitative
properties of signals, both chemical and cell-contour-based. However, some ab-
solute “anchoring” measures are necessary to correctly infer parameters respon-
sible for the size or speed of cells. In this sense they should provide complimen-
tary information to the features based on the Fourier transform. An important
insight obtained from the exploration of outputs from our calibration sample is
that for some parameter configurations cells develop pseudopods, often very dy-
namically, while for other parameters cells remain in a simple, elongated shape.
The initial cell shape for all the parameter was a circle, and depending on θ the
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Figure 9: Harmonic contribution to a cell shape: the effect of every harmonic (x axis) on the cell
shape reconstruction. Each corresponding harmonic’s coefficient is multiplied by an amplification
factor (y-axis) to either illustrate the standard shape (amplification factor 1) or to exaggerate the
coefficient’s effect (amplification factor 5 or −5). The level of detail in the reconstruction increases
with the harmonic rank.

cell can diverge from this initial state, changing the proportions between its area
and perimeter (area-perimeter ratio, APR). Moreover, the elongated cases are
likely to cover long distances in a directed manner while the pseudopod-forming
cases tend to either stay still or randomly wander around their initial location.
These observations are in line with the findings of Neilson et al. [2].

Figure 10 shows various types of dynamics of cell areas, perimeters and
APRs that can be observed for different cell types. For the elongated rigid
type of cell (top row) all three measures increase smoothly over time, while for
the circular rigid type (bottom row) they smoothly remain (roughly) constant
over time. For the two flexible types (2nd and 3rd row) these three quantities
are subject to sharp fluctuations over time, with the elongated type showing
a downward trend in the later time periods and the circular type exhibiting a
stable dynamics.

These observations lead us to specifying “anchoring” features as follows.
First, we consider the mean value of APR for t ≥ 500. Restricting the time
domain to its second half should mitigate the impact of the convergence of the
NSPDE system from its initial state to the stationary state implied by θ and
capture the long-term value of the APR. Second, we take the label of the model
best fitting the APR time series obtained as follows. We use linear/nonlinear
least squares (implemented in the MATLAB fit function) to fit 15 different models
(polynomials of order 2–9, exponentials of order 1–2, Fourier series of order 1–5)
to the whole series of APR as this time we are interested in both the transition
period and the steady state. Thus, we can group the cells depending on their
APR series. Third, we compute the minimum, mean and maximum distance
travelled by the cell to distinguish between stationary and moving cells. We
also include the distance to the furthest point reached by the cell’s midpoint,
which, in addition to the total distance travelled, should give an indication of
whether the cell’s movement is directed or random. Lastly, we include a series
of crude measures of shape description and evolution of shape in time based on
the radius of the cell, calculated as the distance between the centroid of the cell
and points on the cell’s outline. We include the minimum and maximum radius
of the cell, taken across all the time points, as well as seven percentiles (1st,
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Figure 10: Different cell types and the dynamics of the corresponding areas, perimeters and area-
perimeter ratios. Columns from left to right: contour evolution in time for t = 1, 2, . . . , 1000 (the
shade indicates the time point, from early – light, to late – dark); contour evolution in time for
t = 1, 101, . . . , 901; time series of GI for t = 1, 2, . . . , 1000 (left axis) and for t ≥ 100 (right axis);
time series of area (left axis) and perimeter (right axis); time series of area-perimeter ratios. Rows
from top to bottom: elongated rigid type; elongated flexible type, circular flexible type; circular
rigid type.

5th, 25th, 50th, 75th, 95th, 99th) of the distribution of the time series of ratios
of minimum radius to maximum radius. The latter feature aims to encode some
of the information relating to the cell elongation through time.

3.2. Gaussian process regression

To summarise multiple features and to make predictions about θ we em-
ploy Gaussian process (GP) regression, see Rasmussen and Williams [14] for
an extensive treatment of GPs. The GP regression model is a nonparamet-
ric regression explaining the observed target values (here: each element of θ)
in terms of the values of the latent function f at the corresponding locations
(here: the extracted features, see Section 3.1 and Table 2). These unobserved
function values are assumed to follow a GP, which is a stochastic process such
that the joint distribution of any finite number of random variables from this
process is Gaussian. A Gaussian process is completely specified by its mean and
covariance function.
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We model each parameter with a separate GP regression, which is similar to
the approach of Fearnhead and Prangle [13] who use independent linear regres-
sions for each model parameter separately. We note that it could be possible
to model all the parameters jointly using the multivariate output GPs of Conti
et al. [27] and Conti and O’Hagan [28], or the GP autoregressive (GPAR) regres-
sion model of Requeima et al. [29]. However, the former approach is designed
particularity for sparse data for which the correction for correlations between
the outputs can be useful. In our large dataset case such a correction is not
expected to add much leverage as suggested in Conti and O’Hagan [28, Sec-
tion 3.1]. Moreover, even though Conti et al. [27] allow for output correlations,
they use the same input length scales in the GP kernel. As we point out later
in this section (Section 3.2.2), allowing for different input length scales plays
an important role in our methodology. The latter GPAR approach, although
conceptually appealing, is not practical in our context due to the necessity of
selecting an appropriate conditioning structure. More precisely, Requeima et al.
[29] suggest to decompose the posterior for P outputs θ = (θ1, . . . , θP )T as

p(θ(x)) = p(θ1(x))p(θ2(x)|θ1(x)) . . . p(θP (x)|θ1(x), . . . , θP−1(x)),

which requires selecting an ordering of the outputs. Since there is no natural
ordering in our case, greedy optimisation with P (P + 1)/2 configurations or
exhaustive optimisation with P ! configurations would be necessary. Either way,
applying GPAR to our case would require onerous computations which we be-
lieve should rather be carried out to extend the initial design (see Section 3.2.1
for a discussion how to spend a given computing budget). Finally, we note that
GP regressions are only an intermediate step of our methodology, which involves
an additional post-correction with ABC. Therefore, any inter-dependencies be-
tween the parameters potentially missed by the GP regression are expected to
be recovered in the final step of our framework.

The GP regression is useful on its own merits, as it can flexibly capture
the relationship between the feature space and parameter space, however its
ultimate purpose in our framework is to provide summary statistics for ABC as
presented in Section 3.3. For completeness, below we provide a brief summary
of the GP regression framework.

Suppose we have M sets of outputs from the NSPDE simulator y(j) obtained
for different parameter vectors θ(j), j = 1, . . . ,M . From each output y(j) we
extract features x(j) ∈ RD, which we collect in a matrix X = [x(j)]j=1,...,M .
We let Θi denote the vector of the ith NSPDE parameters collected over the

calibration sample, i.e. Θi = [θ
(1)
i , θ

(2)
i , . . . , θ

(M)
i ]T . We use X as explanatory

variables to explain each of the 10 NSPDE parameters θi by means of a GP
regression model. For the ith NSPDE parameter the GP regression is given by

θ
(j)
i = fi(x

(j)) + ε
(j)
i , ε

(j)
i

iid∼ N (0, σ2
i ), j = 1, . . . ,M, (6)

where N (µ, σ2) denotes the Gaussian distribution with the mean µ and variance
σ2 (and iid stands for “independently and identically distributed”). The latent
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values fi(x) follow a GP

fi(x) ∼ GP(mi(x), ki(x,x
′)),

where

mi(x) = E[fi(x)], ki(x,x
′) = E[(fi(x)−mi(x))(fi(x

′)−mi(x
′))]

are the mean and the covariance function (kernel) of the process fi, respectively.
Hence, it is assumed that the responses θi are conditionally independent given
the latent values fi(x). We stack the latent values for the ith regression in
a vector fi = [fi(x

(1)), fi(x
(2)), . . . , fi(x

(M))]T . Below we adopt a standard
assumption that mi(x) = 0 so the latent process fi(x) is fully specified by the
kernel function. The kernel can be specified in many different ways, including
numerous standard functional forms, see Rasmussen and Williams [14, Ch. 4],
and typically deciding which kernel is “the best” (in any sense) is not obvious
without performing sensitivity analysis. We return to this issue in Section 3.2.2
and for now we only assume that the GP regression model in (6) corresponding
to the chosen kernel is parametrised by a vector of hyperparameters φi consisting
of the observation noise variance, σ2

i , and the kernel hyperparameters2.
For the collected covariates X we obtain the GP prior over function values

p(fi|X,φi) = N (fi|0,Ki), with Ki = ki(X,X). The likelihood is given by
p(Θi|fi) = N (Θi|fi, σ2

i I), where I is the identity matrix, and marginalising over
the latent variables gives the formula for the marginal likelihood

p(Θi) = N (Θi|0,Ki + σ2
i I).

Since the observation model is Gaussian, the conditional posterior distribution
of the latent variables is also Gaussian and has the form

p(fi|Θi,X,φi) = N (Ki(Ki + σ2
i I)−1Θi,Ki −Ki(Ki + σ2

i I)−1Ki).

3.2.1. Estimation

The GP regression model for the ith NSPDE parameter, i = 1, . . . , 10, is
parametrised by the hyperparameter vector φi, which be estimated using maxi-
mum likelihood (ML) or in the Bayesian way. The latter framework is conceptu-
ally appealing as it allows for incorporating prior knowledge into the analysis and
provides a full description of parameter uncertainty. However, these advantages
come at the price of a time consuming estimation and more involved predictions
from the fitted model. The increased computational burden of Bayesian hyper-
parameter estimation can be problematic for a thorough sensitivity analysis,
aimed at selecting the best performing kernel. Since any estimation is done on
a fixed calibration sample, any extra time can be spent on either a more ro-
bust estimation on this existing sample or on extending the existing design and

2In this we follow Rasmussen and Williams [14, Ch. 5] who consider σ2
i a hyperparameter.
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thus improving the accuracy of the GP regression (forward simulations from the
model (1)–(5) take around two minutes on a single CPU). Thus using quick-
to-obtain ML hyperparameter estimates allows us to free up the computational
resources which can be spend on extra forward simulation from the NSPDE
model to obtain a larger calibration sample (denser initial design).

3.2.2. Kernel selection and relevance analysis

We consider five GP kernel types: squared exponential (se), Matérn 3/2
(m32), Matérn 5/2 (m52), rational quadratic (rq), neural network (nn), see
Rasmussen and Williams [14, Ch. 4], which are standard in the literature. We
first estimate all the kernels on the full set of variables (features) allowing for
automatic relevance determination (ARD). ARD means that the kernel function
has a separate length scale per predictor, e.g. the standard squared exponential
kernel with ARD is given by

k(x,x′) = σ2
se exp

(
D∑
d=1

(xd − x′d)2

2ld

)
,

where φ = (σ2
se, l1, . . . , lD)T is a vector of kernel hyperparameters to be es-

timated. For details of ARD see Neal [30] and Rasmussen and Williams [14,
Ch. 5]. The inverse of the length scale parameters ld, d = 1, . . . , D, can be
seen as the weight of the corresponding explanatory variable xd, determining
how relevant it is. Hence, ARD kernels provide a built-in method of variable
selection.

In the second step we estimated each kernel two more times, on restricted
sets of variables. These were subsets of the original variable set indicated as
“relevant” by ARD in the first estimation step. We consider two types of “rele-
vance”: with the estimated length scales below 100 (denoted by the suffix ARD)
and more restrictive, with length scales below 10 (denoted ARDrstr). We refer
to the corresponding kernels as “restricted kernels”. In theory, ARD kernels
should automatically eliminate irrelevant inputs by assigning them high length
scales. In practice, however, the optimisation of the kernel hyperparameters
might be easier numerically when carried out in a space of a lower dimension
corresponding to a restricted feature subset.

3.3. Approximate Bayesian computations

The final step in our proposed inference framework is incorporating GP
regression from Section 3.2 into ABC. The ABC methods are simulation based
algorithms and provide a natural way to make inference in complex systems such
as the NSPDE model (1)–(5). As all Bayesian methods, they aim at making
statements about the posterior distribution

π(θ|yobs) ∝ p(yobs|θ)π(θ),

where π(θ) is the prior distribution on the parameter vector θ and p(yobs|θ) is
the likelihood of the observed data yobs given θ. The ABC methods are par-
ticularly useful when evaluating p(yobs|θ) is too hard or impossible in practice
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since these algorithms circumvent likelihood computations by comparing sum-
mary statistics extracted from the observed dataset yobs and artificial dataset
y∗ generated from the model using parameter θ∗ sampled from some proposal
distribution. The simplest rejection ABC algorithms, in its basic form, is given
as follows, see Pritchard et al. [31]. First, a candidate parameter is sampled from
the prior distribution θ∗ ∼ π(θ) and the model simulator is used to generate the
corresponding dataset y∗. Second, the simulated dataset y∗ is compared to the
observed dataset yobs using a distance metric ρ and a tolerance level ε. Third,
if the distance between yobs and y∗ is not higher than the chosen threshold ε,
the parameter θ∗ that has led to y∗ is accepted.

3.3.1. GP-enhanced semi-automatic ABC

It turns out that in any nontrivial application comparing yobs and y∗ di-
rectly is infeasible. Therefore, the comparison of yobs and y∗ is based on
the distance between summary statistics S extracted from the observed and
simulated datasets. In the basic, summary-statistic-based rejection ABC, if
ρ(S(y∗), S(yobs)) ≤ ε, then the proposed parameter θ∗ is accepted, otherwise it
is rejected and a new proposal is made. Such a procedure is repeated N times
and the retained θ∗s constitute a sample from the approximate posterior distri-
bution πABC(θ|S(yobs); ε), the accuracy of which is controlled by the tolerance
level ε.

The choice of summary statistics is crucial for the performance of ABC. How-
ever, informative summary statistics are typically problem-specific and hard to
devise in the general context. To address this issue, Fearnhead and Prangle
[13] propose the semi-automatic approach to constructing summary statistics
for ABC based on predictions from a linear regression model. The linear regres-
sion model is fitted on a calibration sample of parameter values and features
extracted from the corresponding datasets and aims to provide estimates of
summary statistics of parameters within ABC iterations. Fearnhead and Pran-
gle [13] consider a separate linear regression model for each element of θ, θi,
i = 1, . . . , 10, and they regress the vector of the ith parameters in the calibra-

tion sample Θi = [θ
(1)
i , θ

(2)
i , . . . , θ

(M)
i ]T on the M ×D matrix X = [x(j)]j=1,...,M

constructed using the set of features extracted from the corresponding datasets
y(j), j = 1, . . . ,M , in the calibration sample:

Θi = β
(i)
0 + Xβ(i) + ξi, i = 1, . . . , 10, (7)

where ξi is a vector of zero-mean noise terms. The linear model prediction,

θ̂i
∗

= β̂
(i)
0 + x∗β̂(i), where x∗ is the (row) vector of features extracted from

the dataset y∗, is used as the estimated summary statistic for the proposed
θ∗i and is compared with the corresponding summary statistic for the observed
dataset yobs. The final decision regarding the proposed parameter vector θ∗ is

made by comparing θ̂∗i and θobsi = β̂
(i)
0 +xobsβ̂

(i), where xobs is the (row) vector
of features extracted from the observed data yobs, over different elements of θ
using e.g. the Euclidean distance.
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Regression (7) plays a key role in the semi-automatic ABC approach as
for the given metric ρ and threshold level ε, it is used to make the decision
whether or not to accept the proposed θ∗. Therefore, a higher quality of the
regression leads to more accurate estimation of the summary statistic and thus
improved ABC inference. In highly complex, nonlinear problems, such as the
biophysical cell migration model (1)–(5), linear regression is unlikely to provide
a very accurate summary statistic. Hence, we extend the semi-automatic ABC
approach of Fearnhead and Prangle [13] to allow for a more flexible regression
type, for which we propose a nonparametric GP regression model. We refer
to our approach as GP-enhanced semi-automatic ABC. In our application in
Section 4 we use the final GP specification described in Section 4.3.2.

3.3.2. ABC-SMC

The basic rejection sampling ABC discussed above is known to be inefficient
and various extensions have been proposed to result in improved algorithms,
such as Markov chain Monte Carlo (MCMC) ABC considered by Marjoram
et al. [32] or sequential Monte Carlo (SMC) ABC developed by Beaumont et al.
[33]. These algorithms are likelihood-free equivalents of the likelihood-based
Bayesian methods, see Sisson et al. [34]. As Sisson et al. [34] point out, ABC-
SMC methods are particularly popular in the literature due to their increased
efficiency compared to the ABC-MCMC algorithms.

ABC-SMC methods propagate a set of N parameter values called “par-
ticles” through a series of C intermediary distributions πABC(θ|S(yobs); εc),
c = 1, . . . , C, with decreasing tolerance levels: ε1 > · · · > εC ≥ 0. This ensures
that the intermediary distributions gradually provide a closer and closer ap-
proximation to the target posterior distribution. The particles representing the

cth intermediary distribution are denoted {θ(c)
1 , . . .θ

(c)
N }, c = 1, . . . , C. If S is a

sufficient statistic for θ (which is usually only available for probabilistic models
in the exponential family), then in the limit with respect to the number of inter-
mediary distributions C the true posterior distribution is recovered, otherwise
the limiting distribution is an approximation to the posterior distribution, the
quality of which depends on the informativeness of S. We adopt the ABC-SMC
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variant introduced by Beaumont et al. [9], presented in Algorithm 2.

Algorithm 2: ABC-SMC algorithm Beaumont et al. [9]

Input : model simulator p(y|θ); prior distribution π(θ); distance
function ρ(·, ·); sequence of decreasing tolerance levels
ε1, . . . , εC ; summary statistics S(·).

1 for c = 1 do
2 for n = 1 to N do
3 while ρ(S(y∗), S(yobs)) ≥ ε1 do
4 Sample a parameter from the prior: θ∗ ∼ π(θ).
5 Generate data: y∗ ∼ p(y|θ∗).
6 Calculate summary statistics: S(y∗).

7 end

8 Save the proposed parameter: θ
(1)
n = θ∗.

9 Calculate particle weight: w
(1)
n = 1

N .

10 end

11 Normalise weights: W
(1)
n =

w(1)
n∑N

m=1 w
(1)
m

, for n = 1, . . . , N .

12 Set τ2
2 as twice the empirical variance of the θ

(1)
n ’s.

13 end
14 for c = 2 to C do
15 for n = 1 to N do
16 while ρ(S(y∗), S(yobs)) ≥ εc do

17 Pick θ∗∗ from θ
(c−1)
n ’s with probabilities W

(c−1)
n .

18 Sample a particle from a perturbed kernel:
θ∗ ∼ K(θ|θ∗∗; τ2

c ).
19 Generate data from the model: y∗ ∼ p(y|θ∗).
20 Calculate summary statistics: S(y∗).

21 end

22 Save the proposed parameter: θ
(c)
n = θ∗.

23 Calculate particle weight: w
(c)
n =

π(θ(c)
n )∑N

m=1W
(c−1)
m K(θ

(c)
n |θ(c−1)

m ;τ2
c )

.

24 end

25 Normalise weights: W
(c)
n =

w(c)
n∑N

m=1 w
(c)
m

, for n = 1, . . . , N .

26 Set τ2
c+1 as twice the weighted empirical variance of the θ

(c)
n ’s.

27 end

Particle degeneracy is a well-known phenomenon in the SMC literature, see
Doucet et al. [35]. It consists in the empirical distribution of particles becoming
highly skewed after only a few iterations leading to one particle eventually car-
rying the whole mass. To overcome this problem in the context of ABC-SMC
one can fit a density kernel K around each of the N particles from iteration c
and use the resulting N -component mixture distribution as the candidate dis-
tribution for sampling particles at c+1. In our application we follow Beaumont
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et al. [9] and use a Gaussian kernel to perturb the sampled particle.
The idea how to weight the retained particles shares similarities with the

standard importance sampling weights and we refer to Toni et al. [36] for the

derivation of the weights formula. In brief, the numerator of w
(c)
n represents

the prior distribution, while the denominator represents a Monte Carlo approx-
imation to the proposal distribution. The latter is the perturbed intermediary
distribution at the previous time point.

4. Results

In this section we report our results, in which we continue to make a dis-
tinction between the pre-data and post-data phases, see Figure 5. The former
phase consists of generating the calibration sample (Section 4.1), selecting the
appropriate set of features (Section 4.2) as well as fitting the GP regression
models (Section 4.3). The post-date phase includes estimating the parameters
of the NSPDE model on the given dataset using the fitted GP regression models
for an approximate Bayesian uncertainty quantification as well as running the
ABC-SMC algorithm for an additional post-correction (Section 4.4). Moreover,
as pointed out in Section 2.3, we focus on two cases of data observability, Fully
Observed Data (with all the outputs being observable) and Partially Observed
Data (with only the evolving cell membrane being possible to record). The data
we analyse were provided by the organisers of the Cside [37] competition3, in
which our results ranked first in the category Stochastic Differential Equations.

4.1. Calibration samples

As pointed out in Section 2, neither Neilson et al. [2] nor Tweedy et al.
[3] explicitly specify biophysically plausible ranges for the NSPDE parameters.
Thus in our application we needed to come up with a working assumption on
the plausible parameter region to construct the calibration design [38] used in
the pre-data phase of our method. To this end, we experimented with the
NSPDE simulator and investigated its outputs for different parameter values
(obtained by varying the default parameter vector θ̃ from [17], specified in Ta-
ble 1). We then assessed the generated outputs using our prior knowledge in
the observation space. These experiments led us to confine the parameter space
to a compact domain given by [0.5θ̃, 2θ̃]. This truncation is symmetric on a log
scale, and we demonstrate that this domain is broad enough to generate a sub-
stantial output variability, see Figure 11 for versatile patterns of cell membrane
evolution (see also Figures A.1–A.4 in Supplement A for the variability in the
patterns of chemical signal dynamics). Our consultations with cell biophysicists

3Cside stands for “competitive statistical inference for differential equations” and was an
event hosted at the University of Glasgow, sponsored by EPSRC’s SofTMech and funded by
the Biometrika Trust in which participants were invited to infer parameters of differential
equation models for the provided datasets.
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and biophysiologists confirmed that the generated patterns cover typical mech-
anisms observed in laboratory experiments (personal communication with the
last author of [2] and the first author of [3]).

Figure 11: Examples of cell membrane evolution for different parameter vectors for t =
1, 2, . . . , 1000. The shade indicates the time point, from early – light, to late – dark.

We note that in a more general general context, outside our particular ap-
plication, truncating the parameter space to a compact domain is meaningful
for several reasons. First, extreme parameter values far away from the default
ones typically lead to a violation of the physical model assumptions and to
singularities in the solutions (demonstrating as crashes of the finite element dis-
cretisation programs needed for the numerical solution). Our experiments with
the NSPDE simulator of the model (1)–(5) revealed that it is very sensitive to
the parameter choice. Second, the first (pre-data) phase of our inference proce-
dure assumes parameter identifiability in the sense that the map from the data
to the parameter space is one-to-one, meaning that different features of the data
are associated with different parameter values. This assumption may only hold
locally, i.e. for a certain neighbourhood around θ̃. Third and most importantly,
the truncation of the parameter space may often reflect actual research practice.
When studying the biophysical properties of a system, researchers typically ap-
ply prior knowledge from the literature or previous studies carried out in their
field. For the particular example of cell movement, domain-experts studying the
properties of a given cellular organism can be guided in their inference by pa-
rameter ranges available for related cellular organisms, and this prior knowledge
can be naturally incorporated into the inference scheme.

We emphasize that the truncation is only needed for the first (pre-data)
phase of our method. In fact, it turned out in the Cside [37] competition that
some of the ground-truth parameter values were outside of our initial compact
domain and we demonstrate later in this section how the second (post-data)
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phase of our method based on ABC-SMC can deal with that. We also note
that instead of a truncation a squashing function from the real numbers to a
compact interval could be used, and the methodological modifications required
are straightforward to implement.

We use the compact domain [0.5θ̃, 2θ̃] to specify two calibration designs
(used to generate calibration samples), one for training and the other for vali-
dation. The training calibration sample is constructed using 1000 points gener-
ated with a Sobol sequence [39] for GP kernels selection (see Section 3.2.2), and
further 1000 points (continuing the previous 1000 points) for the refinement of
the final kernel specification. The validation calibration sample consists of 100
points generated from a Latin hypercube design [40]. Thus in total we use 2100
calibration samples.

4.2. Feature analysis

The 2100 calibration samples generated using the space filling designs are
used to determine relevant features. Since the final feature selection is mostly
based on the exploration of the outputs from the NSPDE simulator, below we
briefly comment on some of the insights gained from these experiments.

EFA coefficients. As discussed in Section 3.1, we employ the EFA coefficients
to model cell shape variation. We use the EFA coefficients as input variables to
PCA, which allows us to establish a low-dimensional space to assess similarities
and differences across shapes. We apply EFA to all the cell contours, generated
over 1000 time points and with 2100 different parameter values in our calibration
sample. Here we treat the time series of cell contours generated for the same
θ as independent shapes, so PCA is applied to 1000×2100 contours4. We use
the R package Momocs [26] to perform EFA and PCA applied to the resulting
harmonic coefficients. The first two principal components are found to explain
74.5% of the total variation.

Since the cell contour at each time period (for each parameter θ) is associated
with its own principal components, for each θ we consider a time series of
length 1000 of the first and the second principal component (as the first two
principal components are already highly informative). We utilise these series in
two ways. First, for each series we consider its seven percentiles (1st, 5th, 25th,
50th, 75th, 95th and 99th) which we take as features. Second, for each series
we count the number of its zero crossings (separately x and y axis crossings).
These zero crossings refer to the cell’s path projected in the PCA space. Figure
12 illustrates that the number of zero crossings in 1000 time points provides a
useful tool to differentiate between distinct cell types at the same time allowing
us to group similar types together. Figure C.1 in Supplement C.1 shows the
underlying original cell movements.

4More precisely speaking, we carry out PCA twice (independently): once for the training
calibration sample of 2000 points and once for the validation calibration cample of 100 points.
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Figure 12: Cell path projections into the PCA space based on Fourier shape descriptors for three
different parameter vectors (in separate panels). Each panel shows five replications (depicted with
different colours) generated using the same value of θ. Horizontal axis – the 1st principal component;
vertical axis – 2nd principal component. Notice that the number of crossing of the x and y axis is
very low for the cell on the left panel, medium for the cell in the middle panel, and very large for
the cell on the right panel.

Fourier analysis for chemical signals. We carry out PCA on the matrices ob-
tained using the Fourier transform method in Algorithm 1, where the Fourier
transform is applied to signals obtained from chemical outputs of GI, LA, LI
and S. Figure 13 shows projections into the first two principal component spaces
corresponding to the multivariate outputs (LA, LI, S) from the training sample

of 1000 Sobol points. The left column corresponds to signals α
(i)
t in Algorithm 1

(i.e. a spacial profile at time t of a multivariate chemical signal obtained for the
ith parameter in the training calibration sample) set equal to the crude (directly

recorded) outputs of LA, LI and S; in the middle column α
(i)
t was computed as

the centred difference between chemical signals in two subsequent time periods
(computed on possibly many finite element nodes); the right column pertains
to signals being time series of means (over space) of LA, LI and S. We observe
several clusters emerged in these nine PCA spaces, suggesting that the chosen
chemical signals based features should provide useful information for predicting
the elements of θ. Some signals seem more relevant than others, as they lead
to more clear-cut clusters. However, we abstain from a manual selection of rele-
vant features at this point, leaving the task of feature selection to the ARD GP
kernels.

Final feature selection and feature importance. Table 2 presents the final selec-
tion of the variables used to estimate the GP regression models. We fit a separate
GP regression model for each element of θ, separately for Fully Observed Data
and Partially Observed Data. In total 56 and 31 variables are considered for
Fully Observed Data and Partially Observed Data, respectively. Table 3 reports
the percentages explained by the first two principal components for the features
based on PCA.

Figure 14 illustrates feature importance for predicting 4 selected parameters
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Figure 13: Projections into the spaces spanned by the first two principal components for the
training calibration sample of 1000 Sobol points. Each circle corresponds to the projection of a
signal generated from the parameter vector corresponding to one of the 1000 training calibration
samples. PCA spaces obtained from the Fourier transform method described in Algorithm 1 applied
to different signals. Signals (row-wise, from top-left to bottom-right): LA , time differences of LA,
time series of means of LA; LI , time differences of LI, time series of means of LI; S , time differences
of S, time series of means of S.

for Fully Observed Data (fa, rc, kb and Db). The measure of importance is the
inverse length scale from the final GP ARD kernel specification (to be discussed
later in Section 4.3.2), with a higher value indicating that the corresponding
output is more sensitive to the given feature. We can see that the set of most
relevant features can considerably differ between the GP regressions correspond-
ing to the different NSPDE model parameters, with some NSPDE parameters
being explained by only a few features (e.g. kb), while for others multiple fea-
tures are informative (e.g. rc). In addition, we find out that almost every feature
is relevant for at least one NSPDE parameter. This indicates that the proposed
feature selection is sensible and broad enough to capture intricacies of different
NSPDE parameters.

4.3. GP results

For both Fully Observed Data and Partially Observed Data we fit 10 GP
regression models, one for each parameter in θ. To select the best performing
kernel for each regression we fit 15 kernels on a subsample of 1000 points of the
training calibration sample. Such a size of the subsample is large enough to allow
for a reliable model selection and feature relevance analysis but results in much
shorter estimation times compared to fitting on the full training calibration
sample of 2000 points. The full training calibration sample is then used to
retrain the final kernel selection. As the regression outputs (NSPDE parameters)
come from the initial design and hence have scales in an order that avoids
numerical instabilities, we only standardize the inputs to the GP regressions.
This is necessary for numerical stability due to different scales of the inputs. We
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Figure 14: Fully Observed Data: estimated inverse length scales in the final GP kernels for 4
selected parameters. For GP kernels with automatic relevance determination (considered in the
present paper), the inverse length scales provide a measure of feature relevance, see Section 3.2.2.
Horizontal axis – 56 different features (see Table 2). For inverse length scales smaller than 0.01 bars
are not shown, hence features with labels provided have inverse length scales higher than 0.01. In
the two top panels the red horizontal line is a benchmark of 0.1 for comparison.
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Table 2: Features used in the GP regression. For Fully Observed Data all the features were used
(56), for Partially Observed Data only those from the bottom part (31). * refers to the features
constructed as score values corresponding to the †th principal component (PC, † ∈ {1, 2}) from
PCA applied to the reported value. QPS – quadratic power spectra. Percentiles denoted by ‡, with
‡ ∈ {1, 5, 25, 50, 75, 95, 99}.

Feature Explanation

For Fully Observed Data only (25 in total)

Mean step Mean distance moved by the cell in one unit of time
mean APR Mean value of the cell contour area–perimeter ratio for t ≥ 500
APRlabel Label of the model best fitting area–perimeter ratio (polynomial order

2–9, exponential order 1–2, Fourier series order 1–5)
mean GI Mean value of GI
mean diffGI Mean value of the first difference of GI for t ≥ 500
score2 gi†* QPS of the time series of GI
Sc s†* Concatenated (over time) QPS (amplitudes and normalised frequencies)

of S at every 100th t
Sc la†* Concatenated (over time) QPS (amplitudes and normalised frequencies)

of LA at every 100th t
Sc li†* Concatenated (over time) QPS (amplitudes and normalised frequencies)

of LI at every 100th t
Sc s diff†* Concatenated (over time) QPS (amplitudes and normalised frequencies)

of centred differences (over time) of S
Sc la diff†* Concatenated (over time) QPS (amplitudes and normalised frequencies)

of centred differences (over time) of LA
Sc li diff†* Concatenated (over time) QPS (amplitudes and normalised frequencies)

of centred differences (over time) of LI
Sc s time†* QPS of the time series of mean (over space) S
Sc la time†* QPS of the time series of mean (over space) LA
Sc li time†* QPS of the time series of mean (over space) LI

For Fully Observed Data and Partially Observed Data (31 in total)

ZeroCrossPC† Number of zero crossings for the †th PC from PCA applied to Fourier
shape descriptors of cell contour

PcntPC† ‡ ‡th percentile for the †th PC from PCA applied to Fourier shape de-
scriptors of cell contour

Traj total Length of the total trajectory travelled by a cell
Traj min Minimum trajectory covered by a cell in one unit of time
Traj max Maximum trajectory covered by a cell in one unit of time
Traj avg Average trajectory covered by a cell in one unit of time
Traj FPR The distance to the furthest point reached by a cell
Radius max Maximum radius of a cell across all time points
Radius min Minimum radius of a cell across all time points
Radius mean Mean radius of a cell across all time points
PcntRR ‡ ‡th percentile of the distribution of the time series of ratios of minimum

to maximum cell radius

use fitrgp and predict functions from MATLAB Statistics and Machine Learning
Toolbox for fitting and predictions.
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Table 3: Percentages explained (% Expl.) by the first two principal components († ∈ {1, 2}) for
the PCA-based features. See Table 2 for feature explanation.

Feature % Expl. Feature % Expl. Feature % Expl.
Sc s† 44.41 Sc s time† 93.40 Sc s diff† 43.40
Sc la† 53.50 Sc la time† 41.13 Sc la diff† 53.48
Sc li† 58.70 Sc li time† 80.55 Sc li diff† 57.27
Sc gi† 72.46 ZeroCrossPC† 74.77

4.3.1. Kernel selection: out-of-sample performance and comparison with linear
regression

Tables 4 and 5 compare the performance of the 15 kernels considered as
well as that of linear regression and the lasso [41] for Fully Observed Data and
Partially Observed Data, respectively, on the validation calibration sample. The
comparison is in terms of root mean square relative errors (Vi, i = 1, . . . , 10,
defined per NSPDE parameter) and mean root total square relative errors (Vtot),
respectively, computed as

V
[s]
i =

 1

M

M∑
j=1

(
θ̂

(j)[s]
i − θ(j)

i

θ
(j)
i

)2
1/2

, i = 1, . . . , 10,

V
[s]
tot =

1

M

M∑
j=1

 10∑
i=1

(
θ̂

(j)[s]
i − θ(j)

i

θ
(j)
i

)2
1/2

,

where s refers to the kernel specification (or linear regression or the lasso), θ̂
(j)[s]
i

denotes the value of the ith parameter predicted by the GP regression using the

sth kernel for the jth validation calibration sample and θ
(j)
i is the true value of

the ith parameter used to generate the jth calibration sample.
For completeness, we also define the absolute relative errors (Vabs,i) and root

mean relative squared errors (Vavg) as

Vabs,i =
|θ̂i − θi|
θi

, i = 1, . . . , 10,

Vavg =

 1

10

10∑
i=1

(
θ̂i − θi
θi

)2
1/2

,

where θ̂i denotes the point estimate5 of the ith NSPDE parameter and θi the
ground-truth value of the ith parameter. We will use these two measures to

5Here, we use the GP-predicted mean as the point estimate, while in the next section we
use the estimated modes of the ABC-predicted posterior distribution.
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compare the performance of the GP regression approach (based on the final GP
specification discussed in Section 4.3.2) with the one of the ABC-SMC approach
in Section 4.4 on the observed Cside [37] data, hence we do not need to index
these errors by the kernel type (not averaged over M calibration samples).

We first note that in the majority of cases, the GP regressions outperform
the linear regression and the lasso, both for individual parameters (Vi) as well
as in an overall performance (Vtot). Only for 2 parameters in Partially Observed
Data (rc and sa) none of the GP kernels provides an improvement over the lin-
ear regression/lasso, however the differences in performance are small in these
cases (for rc the Vi’s are 0.331/0.338 vs 0.339 and for sa – 0.350/0.350 vs 0.376,
for the linear/lasso model and the best GP kernel, respectively)6. This is an
important result, as Fearnhead and Prangle [13] base their semi-automatic ABC
scheme on linear regression and mention that in their application the lasso was
not beneficial (even though they note that for regressions with large numbers
of explanatory variables the lasso may be appropriate). Since the performance
of any summary-statistic-based ABC is determined by the goodness of the un-
derlying summary statistic we have grounds to expect that GP-enhanced semi-
automatic ABC works better than the linear-regression-based semi-automatic
ABC of Fearnhead and Prangle [13].

Regarding the performance of individual GP kernels, there are four main
observations. First, there is no single “strictly dominating” kernel for all the
NSPDE parameters so it is worth adopting case-specific kernels. Second, the
best performing kernels for the same parameters may differ between Fully Ob-
served Data and Partially Observed Data, which comes as no surprise given
different feature sets in both cases. Third, in several instances restricted ker-
nels improve upon their unrestricted counterparts, which confirms our initial
belief regarding an enhanced numerical stability of restricted kernels. Fourth,
the out-of-sample performance considerably varies among parameters: e.g. fa
or da seem to be relatively easy to infer from the data while Db, sa or ba are
much harder to pin down accurately.

4.3.2. Final kernel configuration

Table 6 presents the final kernel for each parameter of the NSPDE system.
This selection was made made based on the out-of-sample performance in terms
of the Vi’s of 15 different kernels estimated on 1000 training calibration samples7.
To improve this final configuration we re-estimated it on a bigger calibration
sample consisting of 2000 Sobol points starting the optimisation from the hy-
perparameter values delivered by the first estimation. As can be seen in Table
7 this refinement slightly improves the out-of-sample performance of the GP re-
gression in terms of yielding somewhat lower mean Vi (denoted V̄ [s])compared

6For sa in Fully Observed Data all the GP kernels outperform linear regression but are
inferior to the lasso.

7If a restricted kernel (ARD or ARDrstr) performed equally well as a general one, the
latter one was chosen to allow for extra flexibility.

34



Table 4: Out-of-sample root mean square relative errors V
[s]
i , and mean root total square relative

errors V
[s]
tot : Fully Observed Data. Regression types: linear, lasso [41], GP. GP regressions with

kernels: squared exponential (se), Matérn 3/2 (m32), Matérn 5/2 (m52), rational quadratic (rq),
neural network (nn); suffixes ARD and ARDrstr for the kernels estimated in the 2nd step (see
Section 3.2.2) on restricted sets of features which were indicated as “relevant” by ARD in the 1st
estimation step, with two types of “relevance”: with the estimated inverse length scales above 0.01
(denoted by the suffix ARD) and more restrictive, with inverse length scales above 0.1 (denoted
ARDrstr). For the lasso: the regularisation parameter for each regression chosen based on 10-fold
cross-validation on the training set. The best performing kernel for each parameter and overall
in bold. # GP better linear/lasso – the number GP kernels performing better than the linear
regression/lasso.

Kernel fa rc kb db Db kM sa ba Da da V
[s]

tot
se 0.372 0.156 0.292 0.331 0.435 0.209 0.376 0.337 0.455 0.056 1.364

seARD 0.372 0.156 0.292 0.332 0.421 0.209 0.376 0.337 0.456 0.056 1.356

seARDrstr 0.372 0.160 0.176 0.252 0.235 0.206 0.376 0.336 0.435 0.058 1.138

m32 0.372 0.160 0.159 0.367 0.601 0.259 0.376 0.331 0.508 0.056 1.451

m32ARD 0.372 0.153 0.175 0.359 0.629 0.247 0.376 0.331 0.519 0.041 1.472

m32ARDrstr 0.372 0.155 1.000 0.263 1.000 0.349 0.376 0.331 0.355 1.000 2.060

m52 0.372 0.188 0.233 0.325 1.033 0.238 0.376 0.318 0.633 0.058 1.750

m52ARD 0.372 0.153 0.221 0.360 1.014 0.241 0.376 0.318 0.601 0.062 1.726

m52ARDrstr 0.372 0.155 0.380 0.184 1.291 0.294 0.376 0.318 0.411 0.067 1.921

rq 0.108 0.149 0.205 0.348 0.688 0.222 0.376 0.313 0.561 0.060 1.422

rqARD 0.108 0.155 0.204 0.325 0.672 0.222 0.376 0.313 0.556 0.064 1.405

rqARDrstr 0.141 0.158 0.165 0.331 0.291 0.197 0.376 0.313 0.770 0.069 1.307

nn 0.330 0.446 0.371 0.350 0.350 0.489 0.370 0.376 0.357 0.279 1.513

nnARD 0.205 0.307 0.165 0.241 0.233 0.334 0.348 0.360 0.2052 0.147 1.088

nnARDrstr 0.193 0.304 0.178 0.190 0.304 0.309 0.346 0.359 0.402 0.222 1.185

linear 0.651 0.388 0.298 0.887 0.259 0.491 0.713 0.560 0.876 0.513 2.203

lasso 0.201 0.318 0.380 0.361 0.410 0.230 0.325 0.359 0.573 0.116 1.393

# GP better linear 15 14 12 15 2 15 15 15 15 14 15

# GP better lasso 4 14 13 14 5 6 0 12 12 11 6
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Table 5: Out-of-sample root mean square relative errors V
[s]
i , and mean root total square relative

errors V
[s]
tot : Partially Observed Data. Regression types: linear, lasso [41], GP. GP regressions with

kernels: squared exponential (se), Matérn 3/2 (m32), Matérn 5/2 (m52), rational quadratic (rq),
neural network (nn); suffixes ARD and ARDrstr for the kernels estimated in the 2nd step (see
Section 3.2.2) on restricted sets of features which were indicated as “relevant” by ARD in the 1st
estimation step, with two types of “relevance”: with the estimated inverse length scales above 0.01
(denoted by the suffix ARD) and more restrictive, with inverse length scales above 0.1 (denoted
ARDrstr). For the lasso: the regularisation parameter for each regression chosen based on 10-fold
cross-validation on the training set. The best performing kernel for each parameter and overall
in bold. # GP better linear/lasso – the number GP kernels performing better than the linear
regression/lasso.

Kernel fa rc kb db Db kM sa ba Da da V
[s]

tot
se 0.203 0.347 0.291 0.229 0.323 0.306 0.376 0.340 0.321 0.125 1.191

seARD 0.203 0.347 0.291 0.229 0.327 0.306 0.376 0.340 0.321 0.125 1.190

seARDrstr 0.204 0.347 0.286 0.248 0.327 0.306 0.376 0.340 0.321 0.126 1.200

m32 0.211 0.339 0.279 0.223 0.328 0.306 0.376 0.337 0.319 0.123 1.181

m32 ARD 0.211 0.340 0.283 0.222 0.328 0.306 0.376 0.337 0.319 0.123 1.184

m32ARDrstr 0.219 0.342 1.000 0.366 0.328 0.306 0.376 0.337 0.319 0.129 1.578

m52 0.211 0.346 0.283 0.225 0.328 0.299 0.376 0.338 0.318 0.123 1.186

m52ARD 0.211 0.346 0.283 0.226 0.328 0.299 0.376 0.338 0.318 0.123 1.187

m52ARDrstr 0.210 0.346 0.286 0.330 0.328 0.299 0.376 0.338 0.318 0.123 1.234

rq 0.214 0.353 0.291 0.228 0.326 0.298 0.376 0.336 0.303 0.121 1.183

rqARD 0.214 0.353 0.290 0.228 0.326 0.298 0.376 0.336 0.303 0.125 1.183

rqARDrstr 0.214 0.353 0.282 0.308 0.326 0.298 0.376 0.336 0.329 0.126 1.224

nn 0.350 0.381 0.341 0.261 0.336 0.337 0.375 0.371 0.337 0.226 1.351

nnARD 0.276 0.353 0.412 0.331 0.337 0.314 0.397 0.369 0.343 0.180 1.372

nnARDrstr 0.276 0.365 0.412 0.331 0.337 0.300 0.397 0.367 0.343 0.180 1.371

linear 0.239 0.331 0.288 0.259 0.339 0.304 0.350 0.381 0.312 0.175 1.235

lasso 0.236 0.338 0.283 0.252 0.339 0.307 0.350 0.373 0.336 0.178 1.238

# GP better linear 12 0 7 9 15 7 0 15 2 12 11

# GP better lasso 12 0 2 9 15 13 0 15 12 12 11
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to the configuration estimated on 1000 Sobol points (the mean Vi is decreased by
2% and 3% for Fully Observed Data and Partially Observed Data, respectively).

Table 6: Final kernels used for Fully Observed Data and Partially Observed Data. R/NR refers
to ‘retrained’/‘not retrained’ i.e. estimated or not on 2000 calibration samples, starting from the
estimates from 1000 calibration samples. Kernel types: squared exponential (se), Matérn 3/2 (m32),
Matérn 5/2 (m52), rational quadratic (rq), neural network (nn); suffixes ARD and ARDrstr for
the kernels estimated in the 2nd step (see Section 3.2.2) on restricted sets of features which were
indicated as “relevant” by ARD in the 1st estimation step, with two types of “relevance”: with the
estimated inverse length scales above 0.01 (denoted by the suffix ARD) and more restrictive, with
inverse length scales above 0.1 (denoted ARDrstr).

Parameter Fully Observed Data Partially Observed Data
fa seARD NR m32ARDrstr R
rc m32 NR m32ARD R
kb m32 NR qrARDrstr R
db m32ARD R nn R
Db rqARD R m52ARDrstr R
kM rq R nn R
sa nn NR nn R
ba rq R m52ARDrstr R
Da rqARD R nnARD R
da rq R qrARD R

Table 7: Out-of-sample fit: the single best performing kernel (lowest V
[s]
tot) from Tables 4 and

5 (nnARD and m32, respectively) and the final configuration before refinement (bf. refin.) and
after refinement (aft. refin.) on 2000 Sobol points. Selecting the best kernel for each parameter
results in decreased prediction errors, which are further diminished by retraining on a larger dataset.

V̄ [s] = 0.1
∑10
i=1 V

[s]
i , i.e. denotes the mean over 10 parameters of per-parameter Vi’s.

Measure Single best kernel Combined bf. refin. Combined aft. refin.
Fully Observed Data

V̄ [s] 0.255 0.194 0.190

V
[s]
tot 1.088 0.868 0.858

Partially Observed Data

V̄ [s] 0.284 0.280 0.272

V
[s]
tot 1.181 1.171 1.145

4.3.3. Results on the Cside data

Table 8 presents the results obtained on the datasets from the Cside [37]
competition. Shaded fields indicate the cases for which the ground-truth values
turned out to be outside the prior range. As expected, the relative absolute
errors are typically 4–10 times lower for Fully Observed Data than for Partially
Observed Data, indicating the importance of the information provided by chem-
ical signals. Importantly, with the sole exception of Da, the true values of the
non-shaded parameters always lie in the estimated 2-standard deviation width
CI.
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Table 8: GP results on the Cside [37] data: means θ̂i and standard deviations (in parentheses)
for Fully Observed Data and Partially Observed Data, together with the ground-truth values θi
and the absolute relative error Vabs,i = |θ̂i − θi|/θi. Shaded fields indicate the cases for which the
ground-truth values were outside the calibration domain used in phase 1 of our inference method.

fa rc kb db Db kM sa ba Da da

Fully Observed Data

θ̂i 0.0030 0.0541 0.0041 0.0142 0.0617 0.2474 8.066e-5 0.1395 0.0299 0.0240

std(θ̂i) (0.0010) (0.0175) (0.0010) (0.0033) (0.0132) (0.0433) (0.0011) (0.0417) (0.0068) (0.0029)

θi 0.0032 0.0500 0.0035 0.0130 0.0600 0.3000 8.000e-5 0.3000 0.0250 0.0250

Vabs,i 0.0730 0.0827 0.1840 0.0933 0.0290 0.1754 0.0083 0.5351 0.1976 0.0395

Partially Observed Data

θ̂i 0.0024 0.0801 0.0037 0.0167 0.0541 0.2103 7.650e-5 0.1220 0.0366 0.0176

std(θ̂i) (0.0010) (0.0326) (0.0011) (0.0045) (0.0204) (0.0635) (0.0010) (0.0458) (0.0101) (0.0105 )

θi 0.0040 0.0900 0.0020 0.0100 0.0500 0.1000 7.000e-5 0.0750 0.0150 0.0200

Vabs,i 0.3921 0.1098 0.8286 0.6719 0.0816 1.1034 0.0929 0.6267 1.4398 0.1201

Figures C.3 and C.5 in Supplementary Material C present datasets gener-
ated using the predicted mean parameter values for Fully Observed Data and for
Partially Observed Data, respectively. Comparing these with their ground-truth
counterparts in Figures C.3b and C.5b reveals that the developed GP regres-
sion framework succeeds in capturing numerous visual properties of the observed
datasets. Again, the resemblance is particularly high for Fully Observed Data,
with the predicted chemical signals being very similar to the ground-truth ones
and with the predicted membrane trajectory characterised by long, rather di-
rected movement. Also cell shapes are very alike for the predicted and real
datasets in this case. For Partially Observed Data the visual similarity is some-
what smaller, however it is worth noting that the GP regression framework is
still able to reproduce elongated cell shapes and directed movement. This is
especially noticeable when one takes into consideration a dataset generated us-
ing the default parameter value, depicted in Figure 1, where the cell wanders
randomly.

4.4. ABC results

We first briefly report the results from the initial small-scale ABC phase (see
Figure 5), submitted to the Cside [37] competition, and move to a thorough
analysis of the large-scale ABC study thereafter. We split the latter into two
subparts: the single parameter analysis, in which only one parameter is updated
with the remaining nine parameters fixed to their GP estimates from Table
8, and multiple parameter analysis, in which all ten parameters are updated
simultaneously. For all the studies we use the ABC-SMC algorithm of Beaumont
et al. [9] implemented in the R package EasyABC created by Jabot et al. [42].

In the initial small-scale ABC-SMC study we used N = 40 particles and a
four-step tolerance schedule (set to {40, 20, 10, 5} and {20, 10, 5, 2.5} for Fully
Observed Data and Partially Observed Data, respectively). For the smallest
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tolerance levels we recorded the rejection rates of 3.68% for Fully Observed
Data and 21.1% for Partially Observed Data. The prior distributions were set
to U(0.3θ̃i, 0.5θ̃i), i = 1, . . . , 10, where θ̃i is the default parameter value from
Tweedy [17] (see Table 1). Table 9 presents the results. Out of the ten NSPDE
model parameter, two parameters for Fully Observed Data (kb and Da) and six
parameters for Partially Observed Data show an improvement compared to the
GP regression estimates in terms of the Vabs,i’s. Even though these improve-
ments are only minor, this preliminary ABC analysis constitutes an important
step in our inference framework, as the obtained results allow us to decide upon
the tuning parameters of the ABC-SMC algorithms for the full large-scale study.
Moreover, the results delivered by the initial ABC run provide a promising start-
ing point for further investigation and are particularly encouraging for Partially
Observed Data.

Table 9: ABC results on the Cside [37] data, submitted to the Cside [37] competition: MAP esti-

mates θ̂i and standard deviations (in parentheses) for Fully Observed Data and Partially Observed

Data, together with the ground-truth values θi and the absolute relative error Vabs,i = |θ̂i− θi|/θi.
Shaded columns indicate the parameters for which the ground-truth values were outside the cali-
bration domain used in Phase 1 of our inference method. Bold values indicate the ABC parameter
estimates that are better (in terms of absolute relative error) compared to the GP estimates.

fa rc kb db Db kM sa ba Da da

Fully Observed Data

θ̂i 0.0027 0.0315 0.0040 0.0081 0.0752 0.1826 5.927e-5 0.1007 0.0296 0.0352

std(θ̂i) (0.0002) (0.0226) (0.0009) (0.0058) (0.0180) (0.0690) (3.306e-5) (0.0387) (0.0096) (0.0072)

θi 0.0032 0.0500 0.0035 0.0130 0.0600 0.3000 8.000e-5 0.3000 0.0250 0.0250

Vabs,i 0.1718 0.3698 0.1562 0.3773 0.2540 0.3913 0.2591 0.6644 0.1850 0.4085

Partially Observed Data

θ̂i 0.0023 0.1187 0.0031 0.0115 0.0668 0.2072 4.705e-5 0.0932 0.0234 0.0188

std(θ̂i) (0.0006) (0.0346) (0.0012) (0.0045) (0.0198) (0.0750) (3.301e-5) (0.0392) (0.0102) (0.0078)

θi 0.0040 0.0900 0.0020 0.0100 0.0500 0.1000 7.000e-5 0.0750 0.0150 0.0200

Vabs,i 0.4349 0.3192 0.5731 0.1522 0.3353 1.0725 0.3278 0.2430 0.5580 0.0575

In the remaining part of this section we report the results carried out after
the Cside [37] competition, corresponding to the ultimate step of our inference
framework, i.e. the full-scale ABC analysis. The aim of this investigation is
to learn in which cases a more considerable improvement over the GP regres-
sion estimates can be expected from ABC when run with more particles and
more algorithm iterations. We fix the number of particles to N = 100 and de-
crease the tolerance level linearly, with ten intermediary distributions. We set

the prior distribution for each θi as N
(

1.25θ̃i, (0.375θ̃i)
2
)

, where θ̃i is the de-

fault parameter value from Tweedy [17] (see Table 1). Recall that the compact
calibration domain (used for GP regression fitting) is [0.5θ̃, 2θ̃], so 95% of the
mass of the chosen prior distribution for ABC is in this interval. Keeping 5% of
the prior distribution mass outside the calibration domain allows us to explore
those regions in the parameter space which might be missed by our calibration
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design. Specifically, after the submission to the Cside [37] competition it turned
out that for 3 out of 20 parameters (for both Fully Observed Data and Partially
Observed Data) the ground-truth values were outside our calibration domain,
therefore in our final ABC phase we aim to look into whether the ABC-SMC
algorithm is able to correct for this mismatch.

4.4.1. Single parameter analysis

We first investigate whether the ABC-SMC algorithm can improve upon the
GP estimates when we infer each parameter separately, with the other nine
parameters being fixed at their corresponding GP estimates from Table 8. For
each parameter, we run two replications to assess the convergence. The results
of the single parameter analysis are presented in Figures 16 and 17 in the form of
ABC posterior density estimates for each of the ten intermediary distributions,
for Fully Observed Data and Partially Observed Data, respectively. We report
the maximum a posteriori (MAP) estimates, standard deviations and AREs in
Table 10.

Table 10: ABC results on the Cside [37] data, single parameter analysis: MAP estimates θ̂i
and standard deviations (in parentheses) for Fully Observed Data and Partially Observed Data,

together with the ground-truth values θi and the absolute relative error Vabs,i = |θ̂i−θi|/θi. Shaded
columns indicate the parameters for which the ground-truth values were outside the calibration
domain used in phase 1 of our inference method. Bold values indicate the ABC parameter estimates
that are better (in terms of absolute relative error) compared to the GP estimates.

fa rc kb db Db kM sa ba Da da

Fully Observed Data

θ̂i 0.0033 0.0536 0.0042 0.0145 0.0782 0.2458 6.46e-05 0.1788 0.0276 0.0247

std(θ̂i) (0.0001) (0.0136) (0.0001) (0.0012) (0.0067) (0.0141) (1.66e-05) (0.0345) (0.0012) (0.0009)

θi 0.0032 0.0500 0.0035 0.0130 0.0600 0.3000 8.00e-5 0.3000 0.0250 0.0250

Vabs,i 0.0229 0.0714 0.2027 0.0067 0.3027 0.1806 0.1921 0.4039 0.1039 0.0111

Partially Observed Data

θ̂i 0.0034 0.0077 0.0043 0.0139 0.0503 0.1734 8.23e-06 0.0688 0.0363 0.0184

std(θ̂i) (0.0002) (0.0049) (0.0004) (0.0003) (0.0012) (0.0163) (8.26e-07) (0.0355) (0.0028) (0.0017)

θi 0.0040 0.0900 0.0020 0.0100 0.0500 0.1000 7.00e-5 0.0750 0.0150 0.0200

Vabs,i 0.1406 0.9139 1.1401 0.3903 0.0051 0.7336 0.8823 0.0826 1.4200 0.0784

For Fully Observed Data, ABC provides better estimates (modes of the ABC
posterior densities) for six out of the ten parameters than the GP regression
alone. These can be seen as the points below the zero-line in the top panel
of Figure 15, which presents the differences in Vabs,i’s by means of the Bland-
Altman plot (the errors of the GP estimates are subtracted from the errors of
the ABC MAP estimates, hence the points below the zero-line correspond to
the parameters for which ABC-SMC outperforms the GP regressions). We note
that this and the subsequent Bland-Altman plots are included for visualization
only and do not constitute formal statistical hypothesis tests. Regarding the
overall performance, since in this case the data contain chemical signals, the GP
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Figure 15: Bland-Altman plot for the single parameter analysis, for two independent replications,
top: Fully Observed Data, bottom: Partially Observed Data. ABC and GP method comparison

based on the absolute relative error Vabs,i = |θ̂i − θi|/θi, with lower values indicating a better fit.
x axis: the mean of the ABC and GP Vabs,i’s; y axis – the difference between the ABC and GP
Vabs,i’s; dashed horizontal line – the mean difference between the ABC and GP Vabs,i’s; grey area
– mean ±1.96× standard deviations. The points under the 0 line (dotted) correspond to the ABC
estimates with lower Vabs,i’s than the GP estimates.

regressions fitted to the full set of features (i.e. including the chemical-signal-
based features) are already pretty accurate and the ABC algorithm is able to
only marginally improve upon them: Vavg is equal to 0.199 for ABC, compared
to 0.202 for GP regression. Moreover, the fact that the remaining nine parame-
ters are fixed to essentially incorrect values (i.e. GP estimates) explains why the
ABC posterior densities for the currently inferred parameter may concentrate
quite far from both the corresponding GP estimates and ground-truth values –
as it is the case for Db and ba, see Figure 16.

For Partially Observed Data, for seven out of the ten parameters the single-
parameter algorithm delivers ABC posterior density estimates with modes closer
to the ground-truth values than the GP estimates alone. This is also illustrated
in the Bland-Altman plot in Figure 15, bottom row. However, Vavg is higher
for ABC (0.752) than for GP regressions (0.711), which signals a slightly lower
overall performance of ABC. Figure 17 shows that the ABC estimates for some
parameters, such as Db, ba and da, are close to the ground-truth values, and for
other parameters, such as Da, kb and kM , both the GP and the ABC estimates
are far from the ground-truth values. This indicates that the features based
only on cell contours (and not using chemical signals) might not be informative
enough about some of the NSPDE model parameters. This comes as no sur-
prise and confirms that the set-up of Partially Observed Data was indeed more
challenging than the one of Fully Observed Data. Finally, for some parameters,
such as rc and sa, the ABC sampler seems to converge very far away from
both the GP estimates and the ground-truth values. This issue is consistently
observed over two independent replications, which again suggests that this is
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Figure 16: ABC-SMC posterior density estimates for the single parameter analysis (with other
nine parameters fixed to their GP estimates) for Fully Observed Data. Approximate posterior
distributions for NSPDE model parameters in each panel, with the prior distribution (grey) set to

N
(

1.25θ̃i, (0.375θ̃i)
2
)

, where θ̃i – the default parameter value from Tweedy [17]. The number of

accepted particles in each intermediary distribution is N = 100.

the consequence of fixing other nine parameters at incorrect values (i.e. GP
estimates).
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Figure 17: ABC-SMC posterior density estimates for the single parameter analysis (with other
nine parameters fixed to their GP estimates) for Partially Observed Data. Approximate posterior
distributions for NSPDE model parameters in each panel, with the prior distribution (grey) set to

N
(

1.25θ̃i, (0.375θ̃i)
2
)

, where θ̃i – the default parameter value from Tweedy [17]. The number of

accepted particles in each intermediary distribution is N = 100.
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Overall, the results from the single parameter analysis indicate that in sev-
eral cases ABC-SMC can infer the NSPDE model parameter more accurately
compared to the GP alone. We note that constraining the remaining parameters
to be fixed at the GP estimates may cause a bias in the conditional posterior
distribution of the focal parameter estimated with ABC. A natural extension of
the single parameter analysis is thus to allow all the parameters to be inferred
simultaneously, which we discuss in the next section.

4.4.2. Multiple parameter analysis

Table 11 presents the results, for Fully Observed Data and Partially Observed
Data, from the main part of our ABC study based on updating all the NSPDE
parameters together. The results for Fully Observed Data reveal that seven out
of the ten parameters are inferred more accurately with ABC-SMC (using the
modes of the ABC posterior density estimates) compared to the GP regression
alone. This is illustrated in the Bland-Altman plot in Figure 18 (top row), in
which the differences between the errors (Vabs,i) from ABC and GP regressions
are mostly below the zero-line. Unlike in the single parameter study, this time
the ABC-SMC algorithm also leads to an overall inference improvement: Vavg

amounts to 0.166 and 0.202 for ABC and GP regressions, respectively. Figure 19
shows that the ABC posterior density estimates concentrate around the ground-
truth values, with the only exception of parameter bA. While the (Gaussian)
prior distributions allow the ABC algorithm to sample outside the calibration
domain, the ground-truth value for ba, equal to 0.3, is located too far in the tail
of the prior distribution for this parameter, which hinders the convergence of the
ABC algorithm and results in a finite-simulation ABC posterior concentrating
far from the ground-truth value.

Table 11: Multiple parameter analysis results: MAP estimates θ̂i and standard deviations (in
parentheses) for Fully Observed Data and Partially Observed Data, together with the ground-

truth values θi and the absolute relative error Vabs,i = |θ̂i − θi|/θi. Shaded columns indicate
the parameters for which the ground-truth values were outside the sampling design interval. Bold
values indicate the ABC parameter estimates that were better (in terms of absolute relative error)
compared to the GP estimates.

fa rc kb db Db kM sa ba Da da

Fully Observed Data

θ̂i 0.0029 0.0558 0.0037 0.0142 0.0606 0.2962 8.07e-05 0.1532 0.0234 0.0252

std(θ̂i) (0.0007) (0.0325) (0.0007) (0.0033) (0.0353) (0.1190) (3.5e-05) (0.0335) (0.0223) (0.0050)

θi 0.0032 0.0500 0.0035 0.0130 0.0600 0.3000 8.00e-5 0.3000 0.0250 0.0250

Vabs,i 0.0791 0.1151 0.0704 0.0897 0.0106 0.0128 0.0093 0.4895 0.0622 0.0097

Partially Observed Data

θ̂i 0.0017 0.0924 0.0038 0.0152 0.0664 0.2032 8.44e-05 0.1068 0.0307 0.0244

std(θ̂i) (0.0010) (0.0379) (0.0016) (0.0067) (0.0279) (0.0938) (4.15e-05) (0.0581) (0.0124) (0.0109)

θi 0.0040 0.0900 0.0020 0.0100 0.0500 0.1000 7.00e-5 0.0750 0.0150 0.0200

Vabs,i 0.5770 0.0264 0.8847 0.5210 0.3288 1.0321 0.2058 0.4233 1.0466 0.2192
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Figure 18: Bland Altman plot for multiple parameter analysis, top: Fully Observed Data, bottom:
Partially Observed Data. ABC and GP method comparison based on the absolute relative error

Vabs,i = |θ̂i − θi|/θi, with lower values indicating a better fit. x axis: the mean of the ABC and
GP Vabs,i’s; y axis – the difference between the ABC and GP Vabs,i’s; dashed horizontal line – the
mean difference between the ABC and GP Vabs,i’s; grey area – mean ±1.96× standard deviations.
The points under the 0 line (dotted) correspond to the ABC estimates with lower Vabs,i’s than the
GP estimates.
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Figure 19: ABC-SMC posterior density estimates for multiple parameter analysis (all param-
eters inferred simultaneously) for Fully Observed Data. Marginal approximate posterior distri-
butions for NSPDE model parameters in each panel, with the prior distribution (grey) set to

N
(

1.25θ̃i, (0.375θ̃i)
2
)

, where θ̃i – the default parameter value from Tweedy [17]. The number

of accepted particles in each intermediary distribution is N = 100.

For Partially Observed Data the results from Table 11 indicate that the
ABC-SMC point estimates (modes of the ABC posterior density estimates) are
closer to the ground-truth values than the GP estimates for five out of the
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Figure 20: ABC-SMC posterior density estimates for multiple parameter analysis (all parame-
ters inferred simultaneously) for Partially Observed Data. Marginal approximate posterior dis-
tributions for NSPDE model parameters in each panel, with the prior distribution (grey) set to

N
(

1.25θ̃i, (0.375θ̃i)
2
)

, where θ̃i – the default parameter value from Tweedy [17]. The number of

accepted particles in each intermediary distribution is N = 100.

ten parameters. This can be also seen in the Bland-Altman plot in Figure 18,
bottom row. However, the overall performance of the ABC-SMC algorithm is
much better than that of the GP regression model, with Vavg equal to 0.626 and
0.711 for ABC and GP regressions, respectively.

The ABC posterior density estimates from the multiple parameter analysis
shown in Figure 20 are wider compared to their single parameter counterparts
in Figure 17. This is natural given an increased complexity of inferring all ten
parameters simultaneously. However, this increased uncertainty is compensated
by a more accurate inference which results from inferring all the parameter si-
multaneously and not fixing some of them to the GP estimates. In particular,
the ABC posterior densities for sa and rc are now concentrated around the true
values of these parameters. For the multiple parameter analysis the highest
Vabs,i’s are obtained for parameters kb, kM and Da, which suggests that these
parameters are intrinsically difficult to estimate – presumably because the fea-
tures extracted from the data, used to fit the GP regressions, do not provide
enough information to infer these parameters more accurately. Comparing the
errors (Vabs,i) for Fully Observed Data and Partially Observed Data, see Ta-
ble 11 and Figure 18, we can see that the errors for the former are considerably
lower. This is a consequence of extracting the extended set of features, including
chemical-signals-based features, and hence improved GP predictions.

4.4.3. The benefits from using ABC-SMC correction

Our analysis shows the advantage of the final phase in our inference scheme
(see Figure 5): the GP-enhanced ABC-SMC method for multiple parameters
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leads to more accurate predictions, compared to using only the predictions from
the GP regression model, for most of the NSPDE model parameters for Fully
Observed Data and for half of the parameters for Partially Observed Data. Our
proposed inference framework also improves the overall inference as measured
by Vavg. Moreover, the single parameter analysis reveals that the estimation
of those parameters that happen to be outside the compact calibration domain
used in Phase 1 can particularity benefit from our developed GP-enhanced ABC
scheme. In this updating scheme, for the three parameters (out of twenty in
total) for which the ground-truth values were outside our initial calibration do-
main, ABC is more successful in extrapolating outside the initial design than the
GP regressions alone and leads to estimates closer to the ground-truth values.

Finally, we note that an important advantage of the ABC step is related to
the associated flexible uncertainty quantification mechanism. While the GP re-
gressions alone are able to provide fairly accurate point estimates of the NSPDE
parameters, the implied posterior distribution is necessarily Gaussian as a conse-
quence of the assumed residual distribution in the model (6). As Figures 19 and
20 show, the ABC-posterior marginal densities are non-elliptical (often highly
skewed), which suggests that the Gaussian assumption might be unrealistic in
this case. By relaxing the Gaussianity constraint, the ABC-SMC step provides
a crucial correction to the shape of the posterior distribution and hence overall
uncertainty quantification.

5. Discussion

Parameter estimation in complex biophysical systems described by nonlinear
stochastic partial differential equations (NSPDEs) is a challenging problem, due
to the intractability of the associated likelihood and the high computational
costs of the numerical integration of the NSPDEs. In the present article, we
have explored an approach based on approximate Bayesian computation (ABC),
which is a popular method in the kit of likelihood-free “plug and play” tools.
ABC effectively replaces the unknown likelihood by a metric in some feature
space. The challenge in practical applications is to extract informative features,
or summary statistics, from the data, and appropriately weight and combine
them. Our work has been motivated by the semi-automatic ABC paradigm
proposed by Fearnhead and Prangle [13]. Here, the authors apply a linear
regression approach, based on preliminary features (obtained in a pilot run of
forward simulations) as explanatory variables and each model parameter as a
response. The outputs of these linear regression models are then used as refined
features for the subsequent ABC simulations. In our work, we have replaced
linear regression by more flexible Gaussian process (GP) regression, making
use of automatic relevance determination (ARD) kernels for automatic feature
selection and weighting.

Our findings indicate that the GP regression approach to extracting sum-
mary statistics achieves a significant improvement over the linear regression
approach of Fearnhead and Prangle [13]. This improvement can also be seen
when subjecting linear regression to L1-regularisation for Lasso-based variable
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selection, suggesting that it is the nonlinear flexibility of the GP that is the
source of the improvement. In fact, our GP predictions achieved point param-
eter estimates that, in most cases, were so accurate that they left little room
for improvement (in terms of location) with ABC. If the inference could only
be based on GP regression (without ABC), this would achieve a substantial
reduction in the computational costs.

However, there are two practical problems for the GP regression approach.
First, it is subject to a prior restriction to a compact domain in parameter space.
This is required for the GP training phase, where the compact set is covered
with a space-filling design, and forward simulations from the NSPDE model
are run from the parameters defined by the design points. In principle this
compact domain could be enforced via a nonlinear squashing function defined
over the set of real numbers. However, this approach would lead to a low
effective density of design points in the relevant parameter domain. A better
approach is a truncation based either on prior knowledge or a preliminary set
of exploratory simulations. Parameters whose true values fall outside this prior
truncation domain may then be recovered with ABC. The second problem is
that the assumed form of the regression model (6), with the assumed normality
of the residual distribution, restricts the posterior distribution to be Gaussian.
For that reason, our GP regression should be seen as a (powerful!) step in the
ABC-SMC pipeline rather than a replacement of it.

We have followed Fearnhead and Prangle [13] and made the NSPDE param-
eters the response variables of our GP regression, with the explanatory variables
given by the features. ABC-SMC is then effectively used to relax the domain
and distributional restrictions, as just discussed. As an alternative approach one
could turn the features into the response variables of the GP regression, and
use the NSPDE parameters as explanatory variables. This will effectively lead
to a GP emulator Conti et al. [27], from which an objective function could be
constructed, allowing for the stochasticity of the system in the vein of Andrieu
and Roberts [5]. Parameter inference and uncertainty quantification could then
be based on marrying this approach with a Hamiltonian Monte Carlo sampling
approach, as proposed in Rasmussen [43]. Due to the need for repeated forward
simulations from the NSPDEs for bias correction, this approach is unlikely to be
computationally more efficient than the method proposed in the present paper.
However, an implementation of this idea and a comparison of both methods in
terms of accuracy and computational efficiency would be an interesting topic
for future research.

We have applied the proposed method to a competition on parameter esti-
mation in differential equations systems [37]. The data were generated from a
NSPDE system describing chemotaxis, in which cell movement is as an emer-
gent property based on advection-diffusion-reaction processes of various chem-
ical compounds in the cell membrane, see Neilson et al. [2], Tweedy et al. [3].
Two datasets were made available as two separate challenges of the competition:
Fully Observed Data, which include spatio-temporally varying compound con-
centrations, membrane configurations and cell locations, and Partially Observed
Data, which only include cell locations and membrane configurations. Despite
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the fact that we did not manage to get our large-scale ABC simulation study to
converge by the submission deadline, our method came first in the competition.
In subsequent post-competition work, we have continued the ABC simulations
until convergence, to obtain a closer insight into the performance of the pro-
posed methodology. Our simulations demonstrate the improvement obtained
with GP regression over the linear regression method employed by Fearnhead
and Prangle [13] (for obtaining summary statistics) and a quantification of the
further improvement that can be achieved with ABC. They also allow an assess-
ment of the parameter estimation performance that can be obtained for complex
NSPDE systems with different levels of observability.

A future research challenge is to find a more systematic way of obtaining
the features (as discussed in Section 3.1) to which the GP regression model is
applied, and to find the optimal trade-off for the compact truncation of the
parameter set that is used for training the GP regression model. Too large
a domain will degrade the performance of the GP due to sparse coverage of
the relevant (unknown!) subdomain; too small a domain will leave many true
parameter values fall outside the domain covered by the GP, putting more strain
on the ABC sampler for a subsequent correction.

The ultimate objective is to apply the proposed modelling and inference
framework to real cell migration data, as e.g. obtained by high-resolution mi-
croscopy. Such applications would be of particular interest to cancer research,
so as to shed more light on the mechanisms underlying metastasis. This will
involve additional methodological challenges, though. First, microscopy stud-
ies give us time series of images in video format. Obtaining cell coordinates
from these videos requires image segmentation and tracking techniques, either
manual or automatic. Second, the NSPDE model of Tweedy [17], which was
used in the competition, is expressed in dimensionless quantities. Linking the
equations to real observations is not immediately feasible and requires appro-
priate variable transformations. Third, and most importantly, we lack a ground
truth for real cell movement videos, rendering it difficult to assess the accuracy
of our inference procedure. For that reason, we have restricted our analysis to
simulated data, leaving the extension to real data to future work.

We are convinced that any such analysis will benefit from the study pre-
sented in our paper, which has explored the three essential steps for inference in
complex systems with high-dimensional, stochastic outputs: feature extraction
for dimension reduction, GP regression for feature weighting and fast parame-
ter estimation, and an ABC-SMC scheme for refined inference and approximate
Bayesian uncertainty quantification.

Nomenclature – most important symbols

Outputs from the NSPDE model (1)–(5):

X, Y (correspond to [Γ(t)]Tt=1) – time series of space coordinates of the
cell membrane;

LA (corresponds to [a(γ, t)]
T,|Γ(t)|
t=1,γ=0 ) – time series of local activator values;
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LI (corresponds to [b(γ, t)]
T,|Γ(t)|
t=1,γ=0 ) – time series of local inhibitor values;

S (corresponds to [s(γ, t)]
T,|Γ(t)|
t=1,γ=0 ) – time series of the strength of the

chemosensation stimulus.

Indexing convention:

i = 1, . . . , 10 for the 10 NSPDE parameters and the related concepts;

j = 1, . . . ,M for the elements of the calibration sample and the corre-
sponding outputs;

d = 1, . . . , D for the elements of the extracted feature vectors (hence D is
the GP kernel dimension);

n = 1, . . . , N for the ABC-SMC particles;

c = 1, . . . , C for the intermediary ABC-SMC distributions;

t = 1, . . . , T = 1000 for the time dimension of the NSPDE simulator
output;

s = 1, . . . , S for the GP kernel specification.

Selected variables:

θ = [θi]
10
i=1 = (fa, rc, kb, db, Db, kM , sa, ba, Da, da)T – the vector of param-

eters of the NSPDE model (1)–(5);

θ̃ – the default value of θ from Tweedy [17];

y – observed output from the NSPDE simulator (e.g. X, Y, LA, LI and S
for Fully Observed Data);

x – (low dimensional) vector of features extracted from y;

α – a chemical signal (LA, LI or S, or a transformation of one of them).

GP regression (6):

GP(m(x), k(x,xT )) – Gaussian process with the mean function m and the
variance function k (called kernel);

X = [x(j)]Mj=1 – feature matrix (collecting xs from the calibration sample);

K = k(X,X) – covariance of the training calibration sample;

Θi = [θ
(j)
i ]Mj=1 – vector of the ith NSPDE parameter collected from the

calibration sample;

f(x) – the values of the latent process at x;

f = f(X) = [f(x)(j)]Mj=1 – latent values for the observed sample X;

φ – vector of the GP regression model (6) hyperparameters.

ABC:

π – intractable posterior distribution;
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πABC – ABC approximation to π;

ρ, ε– distance metric, tolerance level;

S – summary statistic (summarising x into a scalar);

θ∗, y∗, x∗ – proposed θ and corresponding y and x;

w
(c)
n (W

(c)
n ) – the unnormalised (normalised) weight of the nth particle in

the cth intermediary distribution.
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