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Abstract We present a novel approach to Bayesian estimation of two financial risk
measures, Value at Risk and Expected Shortfall, in nonlinear, non-Gaussian state
space models. In particular, we consider two specifications of the stochastic volatil-
ity model: with normal and Student’s t observation disturbances. The key insight
behind our proposed importance sampling based approach is to accurately approx-
imate the optimal importance density, which focuses on the augmented parameter
subspace corresponding to high losses. By oversampling the extreme scenarios and
punishing them by lower importance weights, we achieve a much higher precision
in characterising the properties of the left tail. We report substantial gains in the
accuracy of estimates in an empirical study on daily financial data.
Keywords: Bayesian inference; Value at Risk; Expected Shortfall; efficient impor-
tance sampling; mixture of Student’s t distributions; nonlinear non-Gaussian state
space models.

1 Introduction

The experience from the recent global financial crisis shows that precise market risk
estimation is crucial for a large number of agents in the worldwide economy. This
type of risk is related to changes in the investment value in response to the moves of
the market risk factors, e.g. stock prices. There are two standard measures of mar-
ket risk: Value at Risk (VaR), which is a specified quantile of the percentage return
distribution, and Expected Shortfall (ES), defined as the expected loss given it ex-
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ceeds the VaR. However, it is a well documented fact that the volatility of returns is
subject to a dynamic process. Two distinct strands in the literature have emerged to
model the unobserved volatility: observation driven models (ODM), which are non-
probabilistic models for volatility and are typically formulated as generalized au-
toregressive conditional heteroskedasticity (GARCH) models; and parameter driven
models (PDM), which are probabilistic models for volatility, with stochastic volatil-
ity (SV) model being a common example. The latter group has sound theoretical
foundations and it allows for the observed prices to be driven by two independent
processes (for the level and for the volatility).

The price for this greater flexibility of SV-type models is a more difficult analy-
sis, which is usually performed using the methods for nonlinear, non-Gaussian state
space models (SSM). In particular, Bayesian inference is computationally challeng-
ing, as the unobserved volatility sequence needs to be treated as a parameter to be
estimated. Standard approaches to sampling of the latent volatility rely on Markov
chain Monte Carlo (MCMC) methods, cf. [5], [7]. In the context of risk estimation
these methods are clearly inefficient, as they result in a vast majority of the draws
(consisting of model parameters and latent states) corresponding to the non-extreme
scenarios and only very few leading to extreme losses of interest. Intuitively, com-
putationally efficient Bayesian estimation of the tail-related quantities must focus
on the extreme events, which can be achieved by resorting to importance sampling
(IS). [3] developed an IS-based algorithm, Quick Evaluation of Risk using Mixture
of t approximations (QERMit), which allows for efficient estimation of VaR and
ES based on an appropriately constructed importance density. Their approach, how-
ever, is restricted to the class of ODM, as it requires a closed-form formula for the
likelihood.

We present a novel approach to Bayesian risk evaluation in the context of non-
linear non-Gaussian SSM, which we call Extended QERMit (EQERMit). The key
insight of [3] is that the optimal importance candidate for VaR estimation allocates
half of the probability mass to the “high-loss” scenarios and half to the “regular”
ones. We approximate this optimal candidate for PDM to report a substantial gain
in the accuracy of evaluated VaR and ES. Further, the basic method is augmented by
including the most recent realisations of the latent state variables in the “high-loss”
scenarios. We observe an even closer approximation to the optimal target density,
which should lead to an additional gain in the precision of our results.

2 Bayesian Risk Evaluation

Let y = {yt}T
t=1 be a sample of T historical logreturns, and let θ̃ denote the (aug-

mented) vector of all the model parameters (potentially including the latent state).
We are interested in the h-day-ahead forecast of the 100α% VaR or ES, which are
determined by the profit-loss function PL, mapping the h-vector of the future log-
returns y∗ = {yT+1, . . . ,yT+h} into a scalar. A straightforward approach to Bayesian
estimation of both risk measures, called the direct approach, is discussed below.
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Direct Approach

1. Simulate θ̃ (i), i = 1, . . . ,N, from the posterior p(θ̃ |y).
2. Generate y∗(i) ∼ p(y∗|θ̃ (i),y) , i = 1, . . . ,N, the corresponding paths of future

logreturns, given θ̃ (i) and y.
3. Compute PL(y∗(i)), the corresponding profit-loss values.
4. Sort PL(y∗(i)) ascending to obtain the permutation PL( j) := PL(y∗( j)), j =

1, . . . ,N.
5. Compute the 100α% VaR and ES estimates as V̂aRDA = PL((1−α)N) and ÊSDA =

1
(1−α)N ∑

(1−α)N
j=1 PL( j), respectively.

Clearly, such an approach is inefficient: to gain a satisfactory insight into the “high
loss region” (HLR), with the 100(1−α%) lowest returns, one needs to “waste”
many draws by sampling from the “whole” posterior posterior and predictive dis-
tributions (as essentially we are interested only in the tail). An alternative solution,
the IS approach, focuses on the relevant part of the posterior. By oversampling from
the tail and punishing the “excessive” draws by lower importance weights one can
achieve a much higher precision in characterising the properties of the HLR.

IS Approach

1. Simulate θ̃ (i), i = 1, . . . ,N, from the candidate q(θ̃ |y).
2. Compute w(i) = p(θ̃ (i),y)

q(θ̃ (i)|y) , i = 1, . . . ,N, the importance weights of draws θ̃ (i).

3. Generate y∗(i) ∼ p(y∗|θ̃ (i),y) , i = 1, . . . ,N, the corresponding paths of future
logreturns, given θ̃ (i) and y.

4. Compute PL(y∗(i)), the corresponding profit-loss values.
5. Sort PL(y∗(i)) ascending to obtain the permutation PL( j) := PL(y∗( j)), j =

1, . . . ,N.
6. Set V̂aRIS as PL(y∗(k)) for which ∑

k
j=1 w(θ̃ ( j))≤ 1−α and ∑

k+1
j=1 w(θ̃ ( j))> 1−α .

Given V̂aRIS, ÊSIS = ∑
k
j=1 w(θ̃ ( j))PL( j)/∑

k
j=1 w(θ̃ ( j)).

Optimal Candidate Density The choice of the importance density is crucial for
the performance of the IS estimation. The optimal candidate distribution (OCD)
ought to minimise, given the specified number of draws, the numerical standard
error (NSE) of the IS estimator. [2] discusses the condition which the OCD qopt
satisfies, which for the case of the probability estimation of a set S results in∫

x∈S
qopt(x)dx =

∫
x 6∈S

qopt(x)dx =
1
2
. (1)

Condition (1) implies that half of the total mass of the OCD shall be put in
the region of interest S, while the remaining half – outside that region1. Hence,
qopt = 0.5q1 + 0.5q2, where q1 and q2 are candidates for the kernel on SC and S,

1 Such a split is the consequence of the fact that we only have the kernel of the target posterior
and predictive distributions and not the exact normalised densities, which makes it necessary to
adequately normalise the weights via sampling from the whole domain.
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Fig. 1 Construction of the
optimal 50%-50% importance
density. Exemplary profit/loss
function (Student’s t with 5
degrees of freedom) and the
implied 99% VaR (top). The
optimal importance candidate
density for the VaR evaluation
(bottom).

respectively. [3] apply the above result in the context of VaR estimation by inter-
preting S as the HLR. Since the measure of S is then small, [3] take simply q1 as
the candidate on the whole space. Figure 1 illustrates the construction of the OCD
for VaR estimation. In the QERMit algorithm, to determine the border of the HLR,
first the preliminary VaR estimate is found with the direct approach by sampling
from q1; second, the HLR is approximated by q2; third, the OCD qopt is used to per-
form IS estimation. In QERMit qopt is a functions of model parameters and future
observation disturbances.

Approximation to the OCD in SSM The idea of adopting the OCD is conceptu-
ally appealing; it is also feasible in the class of ODM, originally discussed in [3], as
these models allow for an explicit characterisation of the HLR. For PDM, however,
such a specification is unavailable, as the whole volatility process is latent. Hence,
our aim is to approximate the OCD as accurately as possible, by capturing these
augmented parameter vectors which result in extreme losses.

Let y = {yt}T
t=1 be an observed time series driven by a latent state x = {xt}T

t=1.
We consider the following nonlinear non-Gaussian SSM parametrised by θ

yt = ft(xt ,θ ,εt), εt
i.i.d.∼ p(θ),

xt+1 = dt +Ttxt +ηt , ηt
i.i.d.∼ N (0,Qt).

(2)

We assume that the state transition is linear and Gaussian, which is not too restric-
tive in most of applications. The state vectors and matrices dt , Tt and Qt depend
deterministically on t and θ ; ft is a deterministic measurement function of t, θ , xt
and of the realisation of observation disturbance εt . Notice that the OCD for model
(2) is a joint candidate for θ and x (and future observation and signal disturbances),
which makes it high-dimensional. In approximating the “whole” component q1 we
use the decomposition q1(x,θ |y) = q1(x|θ ,y)q1(θ |y) and follow [1] by targeting the
marginal posterior of θ by a mixture of Student’s t distributions (cf. [4]), and the
conditional state density – by a Gaussian density q(x|θ ,y) obtained with a numeri-
cally efficient algorithm of [6]. We use this approximation to obtain the preliminary
VaR estimate, which we use to locate the HLR. Then, in our basic EQERMit algo-
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rithm, we approximate the target distribution in the HLR with q2(x,θ ,η∗,ε∗|y) =
q2(x|θ ,η∗,ε∗,y)q2(θ ,η

∗,ε∗|y), where η∗ = {ηt}T+h
t=T+1, ε∗ = {εt}T+h

t=T+1, where
both components of q2 are targeted with the same algorithms as for q1. Then, we
evaluate both risk measures with the IS approach, with the formula for the impor-
tance weight given by w(θ ,x,η∗,ε∗) = q(y|θ) p(y|θ ,x)

q(y|θ ,x)
p(θ)p(η∗)p(ε∗)

q1(θ |y)p(η∗)p(ε∗)+q2(θ ,η∗,ε∗|y)
.

Including both the observation and the state disturbances in q2 allows us for
a more precise characterisation of the HLR for (2). Further efficiency gains can
be obtained if we augment this approximation by the most recent realisations
xT ,xT−1, . . . ,xT−r of the latent state, as the volatility processes are typically highly
persistent (in the simplest version r = 0). Then, the weight formula must be ad-
justed by the transition probability from the old, “regular” states, to the most recent,
“high-loss” states. We refer to this approach as Augmented EQERMit.

3 SV Model Example

To illustrate the performance of our EQERMit approach, we carry out an empirical
study, considering SV model with normal and Student’s t (SVt) observation errors.

Study Design We apply both specifications to the IBM stock daily logreturns from
January 3, 2007 to December 30, 2011 (1259 observations). The model is

yt = exp(xt/2)εt , εt
i.i.d.∼ N (0,1),

xt+1 = c+φ(xt − c)+ση ηt , ηt
i.i.d.∼ N (0,1).

(3)

where yt is an observed time series of logreturns. For the model parameters c, φ

and σ2
η , we adopt the following (proper, non-informative) prior specifications: c ∼

N (0,1), φ+1
2 ∼Beta(20,1.5) and 1

σ2
η

∼Gamma
( 5

2 ,
0.05

2

)
, which are standard in the

literature, cf. [7]. In the case of Student’s t errors, we take εt
i.i.d.∼ t(ν), where a priori

ν−2∼ Exp(1), and put yt = exp(xt/2)( ν−2
ν

)1/2εt .

Results Table 1 shows the results for the 1-day-ahead 99% VaR and ES for the SV
and SVt models based on N = 10,000 draws and 100 replications to obtain NSEs.
EQERMit achieves usually at least twice higher precision than the direct approach,
based on a single Student’s t component. This accuracy gain is due to explicitly
focusing on the HLR, i.e. approximating the OCD with two components, q1 and
q2. Using just an approximation to the posterior, q1, even when optimised as in [1]
(Preliminary), does not improve much upon adopting a direct candidate.

Figure 2 illustrates the grounds for the superiority of our IS based methods. With
the direct approach only 1% of all the draws correspond to the tail. Due to the focus
on the HLR, our basic EQERMit method generates much more high-loss scenarios
(around 20%). The Augmented EQERMit gets even closer to the OCD: almost 50%
of the draws come from the HLR, as required by condition (1).
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Table 1: Results for the 1-day-ahead 99% VaR and ES, in the SV and SVt models,
based on N = 10,000 candidate draws and 100 replications to obtain NSEs.

SV SVt

Method ARa VaR (NSE) ES (NSE) ARa VaR (NSE) ES (NSE)

Directb 0.3963 -3.6810 (0.0902) -4.4534 (0.1284) 0.0900 -4.0663 (0.1194) -5.1718 (0.1683)
Preliminaryc 0.5033 -3.6804 (0.0809) -4.4663 (0.1159) 0.6668 -4.0746 (0.0847) -5.2324 (0.1464)
EQERMit – -3.6555 (0.0487) -4.4368 (0.0578) – -4.0679 (0.0457) -5.2010 (0.0787)

a Acceptance rate for the independence Metropolis-Hastings algorithm, drawing from q1(θ ,x|y).
b Based on a single Student’s t component, with mode and scale based on the simulated maximum
likelihood estimates, with 5 degrees of freedom.
c Based on a mixture of Student’s t distributions, with the mixture parameters optimised as in [1].

Fig. 2: Sorted future profit/losses PL(y(i)T+1), based on N = 10,000 candidate draws,
and the 99%V̂aR for the SV model. If the true (infeasible) OCD were used, 99%V̂aR
would be in middle of the sample.
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